Efficient Risk-aware Decision-making: A Distributional Perspective

Hao Liang

The Chinese University of Hong Kong, Shenzhen

17th , April, 2024

Sequential Decision-making (SDM)

In many applications, decisions are made over time…

Figure by courtesy of Warren B Powell "A Unified Framework for Sequential Decisions under Uncertainty" And www.slideshare.net/JayaKawale/sequential-decision-making-in-recommendations ²

SDM under Risk

Risk is crucial in some high-stake applications

Clinical trial/Healthcare

Avoid extreme negative outcomes

SDM under Risk

Risk is crucial in some high-stake applications

Risk-neutral vs. Risk-aware SDM

Risk neutrality only considers mean

Mean Risk measures captures certain **distributional** characteristics

- Tail mean: extreme negative outcomes
- Higher order moment: violation

Towards Efficient Risk-aware SDM

Sample and **computational** efficiency is critical!

- Financial trading
- Healthcare monitoring systems
- Online advertising

Question: How to attain efficient risk-aware SDM?

Outline of Research

Risk Estimation

Estimation of Risk Measures (RM)

RM reflects the risk preference towards uncertainty

Cannot evaluate the RM exactly

- Unknown distribution
- Finite samples

Confidence interval (CI) of RM

- ⚫ Provides a **reliable range** in risk-aware context
- ⚫ Allows **better decision-making**

Towards Tight Confidence Intervals

Problem setting

- \blacksquare A risk measure ρ assigns risk value $\rho(F)$ to a **bounded** distribution $F \in D(a, b)$
- Given *n* iid samples $X_1, X_2, \dots, X_n \sim F$
- Goal: Derive **CI** of $\rho(F)$ given X_1, X_2, \dots, X_n

$$
\boxed{l(\rho)} \leq \rho(F) \leq \boxed{u(\rho)}
$$
 w.h.p.

Classical concentration bounds on mean

$$
\frac{|\mu - \hat{\mu}_n| \le c(\mu) \implies}{|\hat{\mu}_n - c(\mu)| \le \mu \le \frac{\hat{\mu}_n + c(\mu)}{|\hat{\mu}_n + c(\mu)|}}
$$

Generalization to risk measures?

- ⚫ Nonlinearity
- Diversity

Global Lipschitz Constant-based Methods [LB22,LHLA22]

Step 2: Concentration bound on $||F - F_n||_p \leq c_p(1)$ DKW, Wasserstein bound

Step 3: Global Lipschitz constant (GLC) of $GLC =$ sup $G,G' \in D(a,b)$ $\rho(G)-\rho(G')$ $\overline{G-G'\Vert_p}$ 2

Step 4: Global linearization $\rho(F) - \rho(F_n)$ | \leq 2 $GLC \cdot ||F - F_n||_p \leq$ 1 GLC c_p $|\rho(F_n) - \text{GLC} \cdot c_p| \leq \rho(F) \leq |\rho(F_n) + \text{GLC} \cdot c_p|$

[LB22] LA, P. and Bhat, S. P. "A wasserstein distance approach for concentration of empirical risk estimates." *J. Machine Learn. Res*, 23(238):1–61, 2022. [LHLA22] Leqi, Liu, et al. "Supervised learning with general risk functionals." *International Conference on Machine Learning*. PMLR, 2022.

A Distribution Optimization Framework

Limitations of GLC-based method

- Not easy to obtain
- ⚫ **Loose** due to global linearization of **nonlinear** risk measure
- Specific for each RM

Question 1: How to obtain tight CI of generic risks?

A Distribution Optimization Framework [LL23a]

[**L**L23a] Hao Liang, and Zhi-Quan Luo. "A distribution optimization framework for confidence bounds of risk measures." *International Conference on Machine Learning*. PMLR, 2023.

Optimal Solution

Computational challenges

- **Infinite-dimensional** CDF
- **Diverse** and **nonlinear** risk measures

Can we obtain optimal solutions?

Closed form as **transformation** of F_n , computationally efficient

Intrinsic Tightness

Our new baseline [LL3a]
\nLLC =
$$
\sup_{G,G' \in B(F,c)} \frac{\rho(G) - \rho(G')}{\|G - G'\|_p}
$$

Our bounds improve the **tightest Local Lipschitz Constant**!

$$
\rho\left(\overline{F_n^p}\right) < \underbrace{\rho(F_n) + \text{LLC} \cdot c_n^p}_{\text{LLC bound}} < \underbrace{\rho(F_n) + \text{GLC} \cdot c_n^p}_{\text{GLC bound}}
$$

Ours vs. LLC

Numerical Experiments

Comparisons of CIs for **CVaR** and **ERM** with varying sample sizes

Risk-aware SDM:**Bandits**

Risk-aware Multi-armed Bandits

Optimism in Face of Uncertainty (OFU) in SDM

Risk Value → Bound of **Risk Value**

⚫ Explore actions with the **best possible** outcomes

Tighter UCB Less Optimism Higher efficiency

Improved risk estimation \longrightarrow **Better decision-making**

Meta Bandit Algorithm for Generic Risk Measures

Upper Confidence Band [LL23a] For $t=1:N$

 \bullet Maintain EDF for each arm $\widehat{F_{i,t}}$

⚫ Choose action

 $I_t = \argmax_{i \in [K]} \rho(F_{i,t})$

of risk measures." *International Conference on Machine Learning*. PMLR, 2023. 20

Risk-aware RL with Entropic Risk Measure

Markov Decision Process (MDP)

- Tabular MDP $M = (S, A, P, r, H)$ ■ Finite state space S, action space A \blacksquare Transition kernel $P_h(s, a)$ $s' \sim P_h(s, a)$ **E** Reward function $r_h(s, a)$
- \blacksquare Horizon H
- Z_h^{π} Random Variable
- **■** Policy $\pi = (\pi_h)_{h \in [H]}$ $\Pi \ni \pi_h : S \to A$
- \blacksquare Return = cumulative reward $Z_h^{\pi} = r_h(s_h, a_h) + \cdots + r_H(s_H, a_H)$ $a_h = \pi_h(s_h)$, $s_{h+1} \sim P_h(s_h, a_h)$

Risk-neutral MDP vs. Risk-aware MDP

MANAGEMENT SCIENCE Vol. 18, No. 7, March, 1972 Printed in U.S.A.

RISK-SENSITIVE MARKOV DECISION PROCESSES*

RONALD A. HOWARD† AND JAMES E. MATHESON‡§

Entropic risk measure (ERM) [HM72] $\mathbf{U}_{\beta}(X) \coloneqq \frac{1}{\beta} \log \mathbf{E}[\exp(\beta X)] = \mathbf{E}[X] + \frac{\beta}{2}$ $\frac{\beta}{2}$ **V**[X] + O(| β |²)

> β controls risk preference \blacksquare Risk-seeking $\beta > 0$ ■ Risk-averse $\beta < 0$ ■ Risk-neutral $\beta \to 0$

[HM72] Howard, Ronald A., and James E. Matheson. "Risk-sensitive Markov decision processes." *Management science* 18.7 (1972): 356-369. 23

Risk-aware MDP: Optimality

Risk-neutral optimality equation

 $Q_h^*(s, a) = r_h(s, a) + \sum P_h(s' | s, a) V_{h+1}^*(s'')$ $V_h^*(s) = \max_{a}$ $\lim_{a}Q_{h}^{*}(s,a)$, $V_{H+1}^{*}(s)=0$

Optimal substructure

- ◼ Break into **multiple single-stage** problems
- \blacksquare Recursion of value functions

Question 2: Optimal substructure for risk-aware MDP? Answer: Yes. Distributional dynamic programing

Distributional Dynamic Programming: Policy Evaluation

Return = reward + future return

Distributional Dynamic Programming: Risk-aware Control

[**L**L21] Hao Liang, and Zhi-Quan Luo. " Model-based Distributional Reinforcement Learning for Risk-sensitive Control." NeurIPS 2021 Workshop on Ecological Theory of RL.

Risk-aware Optimistic Distribution Iteration (RODI)

Approximate Bellman recursion

 $\widehat{\eta^k_h} \leftarrow \widehat{\text{T}_d}^k$ v_{h+1}^k

Distributional Optimism Operator $\overline{\eta^k_h} \leftarrow \mathbf{O}_{c^{\boldsymbol{k}}}\widehat{\eta^k_h}$

Policy Execution $\pi_h^k(s) \leftarrow \text{argmax}_a U_\beta(\eta_h^k(s, a))$ **RODI** [**L**L22] $\boldsymbol{\eta_h^k} \leftarrow \mathbf{O}_{c^k} \widehat{\mathbf{T}_d}$ \overline{d} \boldsymbol{k} ν_{h+1}^k

Optimism $\mathbf{U}_{\beta}(\eta^k_h(s,a)) \geq \mathbf{U}_{\beta}(\eta^*_h(s,a))$ $\forall (s, a, k, h)$

[**L**L22] Hao Liang, and Zhi-Quan Luo. "Bridging distributional and risk-sensitive reinforcement learning with provable regret bounds." arXiv preprint arXiv:2210.14051v3 (2022). Under review at *Journal of Machine Learning Research*. 27

Regret Lower Bound: Fundamental Hardness

 $T \coloneqq KH$ total time steps

[FWCWX20]
\n
$$
E[\text{Regret}(K)] \ge \Omega \left(\frac{\exp(|\beta|H/2) - 1}{|\beta|} \sqrt{K \log K} \right)
$$

Missing S, A **Loose dependency on**

⚫ Reduction to **2-armed bandit**

[LL22]
E[Regret(K)]
$$
\ge \Omega \left(\frac{\exp(\beta H/6) - 1}{\beta} \sqrt{SAT} \right)
$$

Fundamental trade-off between risk awareness and sample complexity

- Fix and tighten the previous result
- Recover tight risk-neutral result
- \bullet Hold for $\beta > 0$

[FWCWX20] Fei, Yingjie, et al. "Risk-sensitive reinforcement learning: Near-optimal risk-sample tradeoff in regret." *Advances in Neural Information Processing Systems* 33 (2020): 22384-22395.

Regret Upper Bound: Performance Guarantee

- ⚫ First regret analysis of DRL
- ⚫ Matching the **best known result** in [FYCW21]
- ⚫ Computational efficiency
- ⚫ Outperform **RSVI2** [FYCW21] empirically

Risk-aware RL with Dynamic Risk Measure

Risk-aware RL with Dynamic Risk Measure (DRM)

General static risk measure may NOT support Bellman equation max π $\rho(Z_1^{\pi}) = \rho(r_1 + \dots + r_H) \neq \max_{\pi}$ π_1 $\rho(r_1) + \max_{\pi}$ π ₂… π _H $\rho(r_2 + \cdots + r_H)$

Dynamic risk measure assigns values via a recursive application of

$$
Q_h^*(s, a) = r_h(s, a) + \rho_h(V_{h+1}^{\pi}(S'))
$$

$$
V_h^*(s) = \max Q_h^*(s, \pi_h(s)), V_{H+1}^*(s) = 0
$$

Question 3: Can we design RaRL algorithms for general DRM

Answer: Yes. Lipschitz continuous risk measure

$$
|\rho(F) - \rho(G)| \le L_{p,M} \cdot ||F - G||_p, \forall F, G \in D(0,M)
$$

Optimistic Value Iteration with DRM (OVI-DRM)

Optimistic Model $\tilde{P}_h^k \leftarrow \textbf{OM}(\hat{P}_h^k$ $\frac{k}{h}$, V_{h+1}^k , c_h^k)

Bellman Recursion $Q_h^k(s, a) \leftarrow r_h(s, a) + \rho_h(V_{h+1}^k, \tilde{P}_h^k)$ $_{h}^{k}(s,a))$ $V_h^k(s) = \max Q_h^k(s, a)$

> **Policy Execution** $\pi_h^k(s) \leftarrow \text{argmax}_a U_\beta(\eta_h^k(s, a))$

[**L**L24] Hao Liang, and Zhi-Quan Luo, Regret Bounds for Risk-sensitive Reinforcement Learning with Lipschitz Dynamic Risk Measures, *AISTATS 2024*.

Optimism

 $Q_h^k(s, a) \geq Q_h^*(s, a)$

Regret Analysis

Worst-case regret bound of OVI-DRM

$$
\text{Regret}(K) \leq O\left(\sum\nolimits_{h=1}^{H-1} L_{\infty,h} \widetilde{L}_{1,h-1} \sqrt{S^2 AK}\right)
$$

$$
\widetilde{L}_{1,h-1} \coloneqq \prod\nolimits_{i=1}^{h-1} L_{1,i}
$$

Minimax Lower Bound $E[Regret(K)] \ge \Omega(c_{\rho}H\sqrt{SAT})$

Distributional perspective facilities the design of algorithms

- Universality
- Finer risk estimation
- Improved sample efficiency
- Computational efficiency

Research Plan

Exploiting Problem Structure

- ⚫ Inherent structure improves efficiency
	- Optimal value structure: **Lipschitz continuity** [SBY22], **monotonicity** [JP15], **convexity** [P19],…
	- System model: **deterministic** [TP21], **exo-mdp** [S23],…
	- Optimal policy: **monotonicity** [AP22],…
- ⚫ Common in real world applications
	- Operations Research: optimal replacement [FR74], batch servicing of customers [PP02]
	- Energy: energy storage and allocation [SP12]
	- Healthcare: optimal dosing of glycemic control [H10], managing patient service [G06]
	- Finance, Economics…

Combining Generative Model with Decision-making

Generative AI has led to significant advances in NLP, vision, audio, and video

- ⚫ Generative Models for Decision Making
	- LLMs: planning, reward generation, simulation
	- Diffusion Models: planning, RL, and robotic control
	- Sample Efficiency, Exploration: long-horizon, high-dimensional and sparse reward
- ⚫ LLMs and Human/Social behavior
	- LLMs for Human/Social behavior: voting, opinion dynamics, …
	- Human/Social behavior for LLM: behavioral economics, social choice theory
- ⚫ Planning and Risk in LLM agent, LLMs in multi-agent environments…

Thank You