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In many applications, decisions are made over time… 

online recommendation maximize average “satisfaction”

Sequential Decision-making (SDM)

Figure by courtesy of Warren B Powell “A Unified Framework for Sequential Decisions under Uncertainty” 

And www.slideshare.net/JayaKawale/sequential-decision-making-in-recommendations
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Clinical trial/Healthcare

SDM under Risk

CVaRα

𝛼
effect

density

mean

Avoid extreme negative outcomes

Risk is crucial in some high-stake applications

Figure by courtesy of Warren B Powell “A Unified Framework for Sequential Decisions under Uncertainty” 3



SDM under Risk

Finance: stock trading

return

density

mean

Asset 1

Asset 2

Control volatility

Risk is crucial in some high-stake applications

Figure by courtesy of Warren B Powell “A Unified Framework for Sequential Decisions under Uncertainty” 4



Healthcare/Clinical trial Finance

Risk-neutral vs. Risk-aware SDM

Risk neutrality only considers mean

CVaRα

𝛼
effect

density

mean

return

density

mean

Asset 1

Asset 2

Mean Risk measures captures certain distributional characteristics
• Tail mean: extreme negative outcomes
• Higher order moment: violation
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Towards Efficient Risk-aware SDM

Question: How to attain efficient risk-aware SDM?   

Methodology: A Distributional Perspective 

decision

outcome

Interaction

Sample and computational efficiency is critical! 
• Financial trading
• Healthcare monitoring systems
• Online advertising

Universality Improved sample 
efficiency

Computational 
efficiency
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Outline of Research

Risk Estimation

Risk-aware Bandits

Risk-aware 
Reinforcement Learning

SDM

Confidence interval of risk
[LL23a] 

Generic risk measures
[LL23a] 

Entropic risk measure
[LL21][LL22] 

Dynamic risk measure
[LL23b][LL24] 

Risk Awareness
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Risk Estimation

Risk Estimation

Risk-aware Bandits

Risk-aware 
Reinforcement Learning

Confidence interval of risk
[LL23a] 

Generic risk measures
[LL23a] 

Entropic risk measure
[LL21][LL22] 

Dynamic risk measure
[LL23b][LL24] 
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Estimation of Risk Measures (RM)

RM reflects the risk preference towards uncertainty

Cannot evaluate the RM exactly 
• Unknown distribution 
• Finite samples

Confidence interval (CI) of RM 
⚫ Provides a reliable range in risk-aware context
⚫ Allows better decision-making
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Towards Tight Confidence Intervals

Problem setting

Classical concentration bounds on mean
𝜇 − ො𝜇𝑛 ≤ 𝑐 𝜇 ⟹

ො𝜇𝑛 − 𝑐 𝜇 ≤ 𝜇 ≤ ො𝜇𝑛 + 𝑐 𝜇

Generalization to risk measures?

◼ A risk measure 𝜌 assigns risk value 𝜌 𝐹 to a bounded 
distribution 𝐹 ∈ 𝐷(𝑎, 𝑏)

◼ Given 𝑛 iid samples  𝑋1, 𝑋2, ⋯ , 𝑋𝑛 ∼ 𝐹

◼ Goal:  Derive CI of 𝜌 𝐹 given 𝑋1, 𝑋2, ⋯ , 𝑋𝑛

𝑙 𝜌 ≤ 𝜌 𝐹 ≤ 𝑢 𝜌 w.h.p.

⚫ Nonlinearity
⚫ Diversity
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Global Lipschitz Constant-based Methods [LB22,LHLA22]

Step 1: Empirical distribution 

𝐹𝑛 ≔
1
𝑛
σ𝑖=1 𝛿𝑋𝑖

Step 2: Concentration bound on 𝐹𝑛
𝐹 − 𝐹𝑛 𝑝 ≤ 𝑐𝑝 1

DKW, Wasserstein bound

0 𝑏𝑋(𝑛)𝑋(1)𝑎

1
𝑛

1
𝐹𝑛

Step 4:  Global linearization
𝜌 𝐹 − 𝜌(𝐹𝑛) ณ≤

2

GLC ⋅ 𝐹 − 𝐹𝑛 𝑝 ณ≤
1

GLC ⋅ 𝑐𝑝

𝜌 𝐹𝑛 − GLC ⋅ 𝑐𝑝 ≤ 𝜌 𝐹 ≤ 𝜌 𝐹𝑛 + GLC ⋅ 𝑐𝑝

Step 3:  Global Lipschitz constant  (GLC) of 𝜌

GLC = sup
𝐺,𝐺′∈𝐷 𝑎,𝑏

𝜌 𝐺 −𝜌 𝐺′

𝐺−𝐺′ 𝑝
2

[LB22] LA, P. and Bhat, S. P. “A wasserstein distance approach for concentration of empirical risk estimates.” J. Machine Learn. Res, 23(238):1–61, 2022. 
[LHLA22] Leqi, Liu, et al. "Supervised learning with general risk functionals." International Conference on Machine Learning. PMLR, 2022.
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A Distribution Optimization Framework

Limitations of GLC-based method
⚫ Not easy to obtain
⚫ Loose due to global linearization of nonlinear risk measure
⚫ Specific for each RM

Question 1: How to obtain tight CI of generic risks?   

Answer: A Distribution Optimization Framework 

Universality Tightness Computational efficiency
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risk value objective

distribution opt variable
concentration constraint 

max 𝜌(𝐺)
s. t. 𝐺 − 𝐹𝑛 𝑝 ≤ 𝑐𝑝

Optimal solutions

• Maximizer   𝐹𝑛
𝑝

• Minimizer    𝐹𝑛
𝑝

Plug-in Tight CI

𝜌 𝐹𝑛
𝑝

≤ 𝜌 𝐹 ≤ 𝜌 𝐹𝑛
𝑝

A Distribution Optimization Framework [LL23a]
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[LL23a] Hao Liang, and Zhi-Quan Luo. "A distribution optimization framework for confidence bounds 
of risk measures." International Conference on Machine Learning. PMLR, 2023.



Optimal Solution

0

𝐹𝑛
∞

𝐹𝑛
∞

𝑏𝑎

1

Envelope

Closed form as transformation of 𝐹𝑛, computationally efficient

Computational challenges
• Infinite-dimensional CDF
• Diverse and nonlinear risk measures

Can we obtain optimal solutions? 
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0

𝑆+ = 𝑐1

𝐹𝑛
1

𝑆− = 𝑐1

𝑏𝑎

1
𝐹𝑛
1

Water-filling

𝐺 − 𝐹𝑛 ∞ = sup
𝑥

𝐺 𝑥 − 𝐹𝑛 𝑥 ≤ 𝑐∞ 𝐺 − 𝐹𝑛 1 = න
𝑎

𝑏

𝐺 𝑥 − 𝐹𝑛 𝑥 𝑑𝑥 ≤ 𝑐1



Intrinsic Tightness

Our new baseline [LL3a]

LLC = sup
𝐺,𝐺′∈𝐵(𝐹,𝑐)

𝜌 𝐺 −𝜌(𝐺′)
𝐺−𝐺′ 𝑝

LLC vs. GLC Ours vs. LLC 

Our bounds improve the tightest Local Lipschitz Constant!

𝜌 𝐹𝑛
𝑝

< 𝜌 𝐹𝑛 + LLC ⋅ 𝑐𝑛
𝑝

LLC bound

< 𝜌 𝐹𝑛 + GLC ⋅ 𝑐𝑛
𝑝

GLC bound
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Numerical Experiments

Comparisons of CIs for CVaR and ERM with varying sample sizes

CVaR UCB w/ ⋅ ∞

CVaR LCB w/ ⋅ ∞

ERM UCB w/ ⋅ 1

ERM LCB w/ ⋅ 1

16



Risk-aware SDM：Bandits

Risk Estimation

Risk-aware Bandits

Risk-aware 
Reinforcement Learning

Confidence interval of risk
[LL23a] 

Generic risk measures
[LL23a] 

Entropic risk measure
[LL21][LL22] 

Dynamic risk measure
[LL23][LL24] 
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Risk-aware Multi-armed Bandits  

Outcome 
𝑅𝑡 ∼ 𝐹𝐼𝑡

Arm 𝐼𝑡

Low regret

High sample efficiency

Maximize cumulative value


𝑡=1

𝑁

𝜌(𝐹𝐼𝑡)

Pe
rf

o
rm

an
ce

𝑡

Regret

𝜌(𝐹∗)

𝜌(𝐹𝐼𝑡)
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Arm 2

𝜌 𝐹1 𝜌 𝐹2

Outcome 1 Outcome 2

Arm 1



Optimism in Face of Uncertainty (OFU) in SDM

Risk Value
⚫ Act greedily w.r.t.  Upper Confidence Bound of 

Risk Value 

⚫ Explore actions with the best possible outcomes

Tighter UCB Higher efficiencyLess Optimism

Improved risk estimation Better decision-making

19



Meta Bandit Algorithm for Generic Risk Measures

Numerical 
experiments

Regret gain
σ𝑖>1 GLC

2(𝜌)/Δ𝑖
σ𝑖>1 LLC

2(𝜌;𝐹𝑖,2𝑐𝑖
∗)/Δ𝑖

Upper Confidence Band [LL23a]
For 𝑡 = 1:𝑁

⚫ Maintain EDF for each arm 𝐹𝑖,𝑡
⚫ Choose action

𝐼𝑡 = argmax𝑖∈[𝐾] 𝜌 𝐹𝑖,𝑡

[LL23a] Hao Liang, and Zhi-Quan Luo. "A distribution optimization framework for confidence bounds 
of risk measures." International Conference on Machine Learning. PMLR, 2023. 20



Risk-aware RL with Entropic Risk Measure 

Risk Estimation

Risk-aware Bandits

Risk-aware 
Reinforcement Learning

Confidence interval of risk
[LL23a] 

Generic risk measures
[LL23a] 

Entropic risk measure
[LL21][LL22] 

Dynamic risk measure
[LL23b][LL24] 
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Markov Decision Process (MDP)

Tabular MDP 𝑴 = (𝑆, 𝐴, 𝑃, 𝑟, 𝐻)
◼ Finite state space 𝑆, action space 𝐴
◼ Transition kernel 𝑃ℎ 𝑠, 𝑎

𝑠′ ∼ 𝑃ℎ(𝑠, 𝑎)
◼ Reward function 𝑟ℎ(𝑠, 𝑎)
◼ Horizon 𝐻

𝑠1

𝑎1

𝑟1

𝑠2

𝑎2

𝑟2

𝑠𝐻

𝑎𝐻

𝑟𝐻

𝑠𝐻+1

𝑟ℎ +

𝑍ℎ
𝜋 Random Variable

◼ Policy 𝜋 = 𝜋ℎ ℎ∈[𝐻]

Π ∋ 𝜋ℎ: 𝑆 → 𝐴
◼ Return = cumulative reward  

𝑍ℎ
𝜋 = 𝑟ℎ 𝑠ℎ, 𝑎ℎ +⋯+ 𝑟𝐻 𝑠𝐻 , 𝑎𝐻

𝑎ℎ = 𝜋ℎ 𝑠ℎ , 𝑠ℎ+1 ∼ 𝑃ℎ(𝑠ℎ, 𝑎ℎ)
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Risk-neutral MDP vs. Risk-aware MDP

Risk-neutral MDP
max 𝐄[𝑍1

𝜋]

Risk-aware MDP
max 𝝆(𝑍1

𝜋)

Entropic risk measure (ERM) [HM72] 

𝐔𝛃 𝑋 ≔ 1
𝛽
log 𝐄 exp 𝛽𝑋 = 𝐄 𝑋 + 𝛽

2 𝐕 𝑋 + 𝑂( 𝛽 2)

𝛽 controls risk preference
◼ Risk-seeking 𝛽 > 0
◼ Risk-averse 𝛽 < 0
◼ Risk-neutral 𝛽 → 0

[HM72] Howard, Ronald A., and James E. Matheson. "Risk-sensitive Markov decision processes."
Management science 18.7 (1972): 356-369. 23



Risk-aware MDP: Optimality

◼ Break into multiple single-stage problems 

◼ Recursion of value functions

Optimal substructure

Question 2: Optimal substructure for risk-aware MDP? 

Answer: Yes. Distributional dynamic programing  

Risk-neutral optimality equation 

𝑄ℎ
∗ 𝑠, 𝑎 = 𝑟ℎ 𝑠, 𝑎 + σ𝑃ℎ 𝑠′ 𝑠, 𝑎 𝑉ℎ+1

∗ 𝑠′

𝑉ℎ
∗ 𝑠 = max

𝑎
𝑄ℎ
∗ 𝑠, 𝑎 , 𝑉𝐻+1

∗ 𝑠 = 0



Recursion of distributions
𝜂ℎ 𝑠, 𝑎 = σ 𝑃ℎ 𝑠′ 𝑠, 𝑎 𝜈ℎ+1 𝑠′ (⋅ −𝑟ℎ (𝑠, 𝑎))

𝜈ℎ 𝑠 = 𝜂ℎ 𝑠, 𝜋ℎ 𝑠

Distributional Dynamic Programming: Policy Evaluation

Recursion of R.V.s
𝑍ℎ 𝑠, 𝑎 = 𝑟ℎ 𝑠, 𝑎 + 𝑌ℎ+1 𝑆′

𝑆′ ∼ 𝑃ℎ ⋅ 𝑠, 𝑎

𝑌ℎ 𝑠 = 𝑍ℎ 𝑠, 𝜋ℎ 𝑠

Distributional Bellman Operator 𝐓𝒅: 𝑃 𝑅 𝑆 → 𝑃 𝑅 𝑆×𝐴

𝜂ℎ 𝑠, 𝑎 = 𝐓𝒅𝜈ℎ+1 𝑠, 𝑎

Return = reward + future return

mixture shift
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𝜂ℎ
∗ 𝑠, 𝑎 = [𝐓𝒅𝜈ℎ+1

∗ ](𝑠, 𝑎)
𝜋ℎ
∗ 𝑠 = argmax𝑎𝑼𝜷(𝜂ℎ

∗ 𝑠, 𝑎 )

𝜈ℎ
∗ 𝑠 = 𝜂ℎ

∗ 𝑠, 𝜋ℎ
∗ 𝑠

Distributional Dynamic Programming: Risk-aware Control

Key property 1:  Additivity
Key property 2:  Independence

backward recursion

greedy is optimal

Distributional Bellman Optimality Equation  [LL21]

max
𝜋

𝑼𝜷 (𝑍1
𝜋)

[LL21] Hao Liang, and Zhi-Quan Luo. " Model-based Distributional Reinforcement Learning for Risk-sensitive Control." 
NeurIPS 2021 Workshop on Ecological Theory of RL. 26



Risk-aware Optimistic Distribution Iteration (RODI)

Approximate Bellman recursion
𝜂ℎ
𝑘 ← 𝐓𝒅

𝑘
𝜈ℎ+1
𝑘

Distributional Optimism Operator

𝜂ℎ
𝑘 ← 𝐎𝑐𝑘

𝜂ℎ
𝑘

RODI  [LL22] 

𝜂ℎ
𝑘 ← 𝐎𝑐𝑘

𝐓𝑑
𝑘
𝜈ℎ+1
𝑘

Optimism
𝑼𝜷(𝜂ℎ

𝑘(𝑠, 𝑎)) ≥ 𝑼𝜷(𝜂ℎ
∗ (𝑠, 𝑎))

∀ (𝑠, 𝑎, 𝑘, ℎ)Policy Execution

𝜋ℎ
𝑘(𝑠) ← argmax𝑎𝑈𝛽(𝜂ℎ

𝑘(𝑠, 𝑎))

[LL22] Hao Liang, and Zhi-Quan Luo. "Bridging distributional and risk-sensitive reinforcement learning with provable 
regret bounds." arXiv preprint arXiv:2210.14051v3 (2022). Under review at Journal of Machine Learning Research. 27



Regret Lower Bound: Fundamental Hardness

[FWCWX20] Fei, Yingjie, et al. "Risk-sensitive reinforcement learning: Near-optimal risk-sample tradeoff in 
regret." Advances in Neural Information Processing Systems 33 (2020): 22384-22395.

[FWCWX20] 

E Regret 𝐾 ≥ Ω
exp Τ|𝛽|𝐻 2 − 1

|𝛽|
𝐾log𝐾

Missing 𝑺, 𝑨
Loose dependency on 𝑯

⚫ Reduction to 2-armed bandit

𝑻 ≔ 𝑲𝑯 total time steps

28

[LL22] 

E Regret 𝐾 ≥ Ω
exp Τ𝛽𝐻 6 − 1

𝛽
𝑆𝐴𝑇

Fundamental trade-off between risk 
awareness and sample complexity

⚫ Fix and tighten the previous result
⚫ Recover tight risk-neutral result 
⚫ Hold for 𝛽 > 0



Regret Upper Bound: Performance Guarantee

[FYCW21] Fei, Yingjie, et al. "Exponential bellman equation and improved regret bounds for risk-sensitive 
reinforcement learning." Advances in Neural Information Processing Systems 34 (2021): 20436-20446.

⚫ First regret analysis of DRL
⚫ Matching the best known result in [FYCW21]

⚫ Computational efficiency
⚫ Outperform RSVI2 [FYCW21] empirically
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Risk-aware RL with Dynamic Risk Measure 

Risk Estimation

Risk-aware Bandits

Risk-aware 
Reinforcement Learning

Confidence interval of risk
[LL23a] 

Generic risk measures
[LL23a] 

Entropic risk measure
[LL21][LL22] 

Dynamic risk measure
[LL23b][LL24] 
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Risk-aware RL with Dynamic Risk Measure (DRM)

General static risk measure may NOT support Bellman equation  
max
𝜋

𝝆 𝑍1
𝜋 = 𝝆(𝑟1 +⋯+ 𝑟𝐻) ≠ max

𝜋1
𝝆 𝑟1 + max

𝜋2⋯𝜋𝐻
𝝆(𝑟2 +⋯+ 𝑟𝐻)

Dynamic risk measure assigns values via a recursive application of 𝝆

𝑄ℎ
∗ 𝑠, 𝑎 = 𝑟ℎ 𝑠, 𝑎 + 𝝆𝒉 𝑉ℎ+1

𝜋 𝑆′

𝑉ℎ
∗ 𝑠 = max𝑄ℎ

∗ 𝑠, 𝜋ℎ(𝑠) , 𝑉𝐻+1
∗ 𝑠 = 0

31

𝝆 𝐹 − 𝝆(𝐺) ≤ 𝐿𝑝,𝑀 ⋅ 𝐹 − 𝐺 𝑝, ∀ 𝐹, 𝐺 ∈ 𝐷 0,𝑀

Question 3: Can we design RaRL algorithms for general DRM

Answer: Yes. Lipschitz continuous risk measure 



Optimistic Value Iteration with DRM (OVI-DRM)

Bellman Recursion

𝑄ℎ
𝑘 𝑠, 𝑎 ← 𝑟ℎ 𝑠, 𝑎 + 𝝆𝒉(𝑉ℎ+1

𝑘 , ෨𝑃ℎ
𝑘 𝑠, 𝑎 )

𝑉ℎ
𝑘 𝑠 = max𝑄ℎ

𝑘(𝑠, 𝑎)

Optimistic Model
෨𝑃ℎ
𝑘 ← 𝐎𝐌( 𝑃ℎ

𝑘 , 𝑉ℎ+1
𝑘 , 𝑐ℎ

𝑘)

Policy Execution

𝜋ℎ
𝑘(𝑠) ← argmax𝑎𝑈𝛽(𝜂ℎ

𝑘(𝑠, 𝑎))

32

Optimism

𝑄ℎ
𝑘 𝑠, 𝑎 ≥ 𝑄ℎ

∗ 𝑠, 𝑎

[LL24] Hao Liang, and Zhi-Quan Luo, Regret Bounds for Risk-sensitive Reinforcement Learning with Lipschitz 
Dynamic Risk Measures, AISTATS 2024.



Worst-case regret bound of OVI-DRM

𝐑𝐞𝐠𝐫𝐞𝐭 𝑲 ≤ 𝑶 
𝒉=𝟏

𝑯−𝟏

𝑳∞,𝒉
෩𝑳𝟏,𝒉−𝟏 𝑺𝟐𝑨𝑲

Regret Analysis

෩𝑳𝟏,𝒉−𝟏 ≔ෑ
𝒊=𝟏

𝒉−𝟏

𝑳𝟏,𝒊

Minimax  Lower Bound

𝐄 𝐑𝐞𝐠𝐫𝐞𝐭 𝑲 ≥ 𝛀(𝒄𝝆𝑯 𝑺𝑨𝑻)

OVI-DRM

𝐑𝐞𝐠𝐫𝐞𝐭 𝑲 ≤ 𝑶
𝑺𝟐𝑨𝑯 σ𝒉=𝟏

𝑯−𝟏𝑳∞,𝒉
෩𝑳𝟏,𝒉−𝟏

𝟐

𝜟𝒎𝒊𝒏
𝐥𝐨𝐠(𝑺𝑨𝑻)

Lower Bound

𝒍𝒊𝒎
𝑲→∞

𝐑𝐞𝐠𝐫𝐞𝐭

𝐥𝐨𝐠𝑲
≥ 𝛀 

𝒔,𝒂:𝜟𝟏 𝒔,𝒂 >𝟎

(𝒄𝝆𝑯)
𝟐

𝜟𝟏(𝒔, 𝒂)
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Summary

Distributional perspective facilities 

the design of algorithms

◼ Universality

◼ Finer risk estimation

◼ Improved sample efficiency

◼ Computational efficiency

Risk Estimation

Risk-aware Bandits

Risk-aware 
Reinforcement Learning
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Research Plan

35

Complex Decision-making

Exploiting Problem Structure Generative Model



Exploiting Problem Structure 
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⚫ Inherent structure improves efficiency

• Optimal value structure: Lipschitz continuity [SBY22], monotonicity [JP15], convexity

[P19],…

• System model: deterministic [TP21], exo-mdp [S23],…

• Optimal policy: monotonicity [AP22],…

⚫ Common in real world applications

• Operations Research: optimal replacement [FR74], batch servicing of customers

[PP02]

• Energy: energy storage and allocation [SP12]

• Healthcare: optimal dosing of glycemic control [H10], managing patient service [G06]

• Finance, Economics…



Combining Generative Model with Decision-making

37

⚫ Generative Models for Decision Making

• LLMs: planning, reward generation, simulation

• Diffusion Models: planning, RL, and robotic control
• Sample Efficiency, Exploration: long-horizon, high-dimensional and sparse reward

⚫ LLMs and Human/Social behavior

• LLMs for Human/Social behavior: voting, opinion dynamics, …

• Human/Social behavior for LLM: behavioral economics, social choice theory

⚫ Planning and Risk in LLM agent, LLMs in multi-agent environments…

Generative AI has led to significant advances in NLP, vision, audio, and video



Thank You
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