A Distribution Optimization Framework for Risk Estimation

Hao Liang, Zhi-Quan Luo

The Chinese University of Hong Kong, Shenzhen

2024 INFORMS Optimization Society Conference 24th, March

Hao Liang, and Zhi-Quan Luo. "**A distribution optimization framework for confidence bounds of risk measures**." *International Conference on Machine Learning*. PMLR, 2023.

Risk awareness is critical in some applications

Healthcare/Clinical trial

Risk awareness is critical in some applications

Healthcare/Clinical trial

Avoid extreme negative outcomes

Risk awareness is critical in some applications

Healthcare/Clinical trial Example 2 6 Finance

return mean Asset 2

density

Avoid extreme negative outcomes Control violation

Asset 1

Risk awareness is critical in some applications

Mean Risk measures captures certain distributional characteristics

- Tail mean: extreme negative outcomes
- Higher order moment: violation

Estimation of Risk Measures (RM)

RM reflects the risk preference towards uncertainty

- Entropic risk measure: violation
- Conditional Value at Risk: extreme negative outcomes

Estimation of Risk Measures (RM)

RM reflects the risk preference towards uncertainty

- Entropic risk measure: violation
- Conditional Value at Risk: extreme negative outcomes

Cannot evaluate the risk measure exactly

- Underlying distribution is unknown
- Estimate from finite samples

Estimation of Risk Measures (RM)

RM reflects the risk preference towards uncertainty

- Entropic risk measure: violation
- Conditional Value at Risk: extreme negative outcomes

Cannot evaluate the risk measure exactly

- Underlying distribution is unknown
- Estimate from finite samples

Confidence interval (CI) certifies a reliable range in risk-aware context

Problem setting

 \blacksquare A risk measure ρ assigns risk value $\rho(F)$ to a distribution F

Problem setting

- \blacksquare A risk measure ρ assigns risk value $\rho(F)$ to a distribution F
	- CVaR: α fractional tail mean $C_{\alpha}(F) \coloneqq \mathbf{E}[X|X \geq F^{-1}(1-\alpha)]$

• ERM:

$$
\begin{aligned} \mathbf{U}_{\beta}(F) &:= \frac{1}{\beta} \log \mathbf{E}_{X \sim F}[\exp(\beta X)] \\ &= \mathbf{E}[X] + \frac{\beta}{2} \mathbf{V}[X] + O(|\beta|^2) \end{aligned}
$$

Problem setting

 \blacksquare A risk measure ρ assigns risk value $\rho(F)$ to a distribution F ■ Given *n* iid samples $X_1, X_2, \dots, X_n \sim F$, $X \in [a, b]$ $X^n := X_1, X_2, \cdots, X_n$

Problem setting

 \blacksquare A risk measure ρ assigns risk value $\rho(F)$ to a distribution F ■ Given *n* iid samples $X_1, X_2, \dots, X_n \sim F$, $X \in [a, b]$ $X^n := X_1, X_2, \cdots, X_n$

 \blacksquare Goal: Derive **CI** of $\rho(F)$ given X^n

 $l(\rho) \leq \rho(F) \leq u(\rho)$, w.h.p.

Problem setting

 \blacksquare A risk measure ρ assigns risk value $\rho(F)$ to a distribution F ■ Given *n* iid samples $X_1, X_2, \dots, X_n \sim F$, $X \in [a, b]$ $X^n := X_1, X_2, \cdots, X_n$ \blacksquare Goal: Derive **CI** of $\rho(F)$ given X^n $l(\rho) \leq \rho(F) \leq u(\rho)$, w.h.p.

Classical concentration bounds on mean $|\mu - \hat{\mu}_n| \leq c(\mu) \implies$ $\hat{\mu}_n - c(\mu) \leq \mu \leq \hat{\mu}_n + c(\mu)$

Problem setting

 \blacksquare A risk measure ρ assigns risk value $\rho(F)$ to a distribution F ■ Given *n* iid samples $X_1, X_2, \dots, X_n \sim F$, $X \in [a, b]$ $X^n := X_1, X_2, \cdots, X_n$ \blacksquare Goal: Derive **CI** of $\rho(F)$ given X^n $l(\rho) \leq \rho(F) \leq u(\rho)$, w.h.p.

Problem setting

 \blacksquare A risk measure ρ assigns risk value $\rho(F)$ to a distribution F ■ Given *n* iid samples $X_1, X_2, \dots, X_n \sim F$, $X \in [a, b]$ $X^n := X_1, X_2, \cdots, X_n$ \blacksquare Goal: Derive **CI** of $\rho(F)$ given X^n $l(\rho) \leq \rho(F) \leq u(\rho)$, w.h.p.

Step 2: Concentration bound on F_n

Step 2: Concentration bound on F_n

Step 2: Concentration bound on

Step 3: Global Lipschitz constant (GLC) $|\rho(F) - \rho(G)| \leq G LC \cdot ||F - G||_p, \forall F, G$

Step 3: Global Lipschitz constant (GLC) $|\rho(F) - \rho(G)| \leq G LC \cdot ||F - G||_p, \forall F, G$

Step 4: Global linearization $|\rho(F) - \rho(F_n)| \leq GLC \cdot ||F - F_n||_p \leq GLC \cdot c_p$ $\rho(F_n) - \text{GLC} \cdot c_p \leq \rho(F) \leq \rho(F_n) + \text{GLC} \cdot c_p$

Step 3: Global Lipschitz constant (GLC) $|\rho(F) - \rho(G)| \leq G LC \cdot ||F - G||_p, \forall F, G$

Step 3: Global Lipschitz constant (GLC) $|\rho(F) - \rho(G)| \leq G LC \cdot ||F - G||_p, \forall F, G$

Optimal solutions

- Maximizer $\overline{F_n^p}$
- Minimizer $\overline{F_n^p}$

Tighter CI $\rho\left(\overline{F_n^p}\right) \leq \rho(F_n) + \text{LC} \cdot \left\|\overline{F_n^p} - F_n\right\| \leq \rho(F_n) + \text{LC} \cdot c_n^p$

$$
\rho\left(\underline{F_n^p}\right) \le \rho(F) \le \rho\left(\overline{F_n^p}\right)
$$

 $G - F_n ||_{\infty} = \sup$ \mathcal{X} $G(x) - F_n(x) \leq c_{\infty}$

$$
\rho\left(\underline{F_n^p}\right) \le \rho(F) \le \rho\left(\overline{F_n^p}\right)
$$

$$
||G - F_n||_{\infty} = \sup_{x} |G(x) - F_n(x)| \leq c_{\infty}
$$

Challenges

- Infinite-dimensional CDF
- Norm ball constraint
- Diverse and nonlinear risk measures

Challenges

- Infinite-dimensional CDF
- Norm ball constraint
- Diverse and nonlinear risk measures

How to obtain optimal solution? →

Challenges

- Infinite-dimensional CDF
- Norm ball constraint
- Diverse and nonlinear risk measures

How to obtain optimal solution? 7

Closed form as **transformation** of F_n , computationally efficient

Challenges

- Infinite-dimensional CDF
- Norm ball constraint
- Diverse and nonlinear risk measures

How to obtain optimal solution?

Closed form as **transformation** of F_n , computationally efficient

Challenges

- Infinite-dimensional CDF
- Norm ball constraint
- Diverse and nonlinear risk measures

How to obtain optimal solution?

Closed form as **transformation** of F_n , computationally efficient

Intrinsic Optimality

Ours vs. GLC

$$
\rho\left(\overline{F_n^p}\right) < \rho(F_n) + \text{GLC} \cdot c_n^p
$$

$$
GLC = \sup_{G,G' \in D(a,b)} \frac{\rho(G) - \rho(G')}{\|G - G'\|} \qquad \longrightarrow \qquad LLC = \sup_{G,G' \in B(F,c)} \frac{\rho(G) - \rho(G')}{\|G - G'\|}
$$

Intrinsic Optimality

Ours vs. LLC vs. GLC	
$\rho\left(\overline{F_n^p}\right) < \rho(F_n) + \text{LLC} \cdot c_n^p < \rho(F_n) + \text{GLC} \cdot c_n^p$	
$\text{GLC} = \sup_{G, G' \in D(a, b)} \frac{\rho(G) - \rho(G')}{\ G - G'\ }$	$\text{LLC} = \sup_{G, G' \in B(F, c)} \frac{\rho(G) - \rho(G')}{\ G - G'\ }$

Ours vs. LLC vs. GLC

Intrinsic Optimality

Our bounds improve the **tightest Local Lipschitz Constant** (**LLC**)! $\rho\left(\overline{F_n^p}\,\right) < \rho(F_n) + \text{LLC} \cdot c_n^p < \rho(F_n) + \text{GLC} \cdot c_n^p$

LLC vs. GLC LLC vs. Ours

Numerical Experiments

Comparisons of CIs for **CVaR** and **ERM** with varying sample sizes

Summary

■ **Tight** CI

- Apply to **broad** classes of RMs
	- **Spectral risk measure**, including **Conditional value at risk**
	- **Distortion risk measure**
	- **Certainty equivalent**, including **Entropic risk measure**
	- **Rank-dependent expected utility**
- LC-free for specific RM

Common optimal solutions for different RMs

- Computationally efficient
- Motivate improved risk-aware bandit algorithms

Applications to Risk-aware Multi-armed Bandits

Arm 1 Arm 2

Arm K

Applications to Risk-aware Multi-armed Bandits

Applications to Risk-sensitive Multi-armed Bandits

Maximize cumulative value \sum $t=1$ \boldsymbol{N} $\rho(F_{{I}_t})$

Applications to Risk-sensitive Multi-armed Bandits

Maximize cumulative value \sum $t=1$ \boldsymbol{N} $\rho(F_{{I}_t})$

Applications to Risk-sensitive Multi-armed Bandits

Maximize cumulative value \sum $t=1$ \boldsymbol{N} $\rho(F_{{I}_t})$

Low regret High sample efficiency

Optimism in Face of Uncertainty

- Act greedily w.r.t. Upper Confidence Bound **of Risk Value**
- Encourages exploring actions with the best possible outcomes

Tighter UCB \longrightarrow **Higher efficiency**

A Meta Bandit Algorithm for Generic Risk Measures

Lower Confidence Band

For $t = 1:N$

- \bullet Maintain EDF for each arm $\widehat{F_{i,t}}$
- Compute $\overline{F_{i,t}}$ for each $\widehat{F_{i,t}}$
- Choose action
	- $I_t = \text{argmax}_{i \in [K]} \rho(\overline{F_{i,t}})$
- \bullet Observe $R_t \sim F_{l_t}$
- Applicable to generic risk measures
- Reduce to CVaR-UCB in **[1]**
- Provable gain over GLC-UCB in **[2]**

[1] Tamkin, A., Keramati, R., Dann, C., and Brunskill, E. Distributionally-aware exploration for cvar bandits. *In NeurIPS 2019 Workshop on Safety and Robustness on Decision Making, 2019.* **[2] Cassel, A., Mannor, S., and Zeevi, A. A general approach to multi-armed bandits under risk criteria***. In Conference On Learning Theory, pp. 1295–1306. PMLR, 2018.*

A Meta Bandit Algorithm for Generic Risk Measures

4000 2000

500

1000

1500

Number of Pulls

2000

2500

 $/\Delta_i^2$

- Reduce to CVaR-UCB in **[1]**
- Provable gain over GLC-UCB in **[2]**

[1] Tamkin, A., Keramati, R., Dann, C., and Brunskill, E. Distributionally-aware exploration for cvar bandits. *In NeurIPS 2019 Workshop on Safety and Robustness on Decision Making, 2019.* **[2] Cassel, A., Mannor, S., and Zeevi, A. A general approach to multi-armed bandits under risk criteria***. In Conference On Learning Theory, pp. 1295–1306. PMLR, 2018.*

Thank You

Now seeking postdoc and research positions! Feel free to contact via Email haoliang1@link.cuhk.edu.cn