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Mean Risk measures captures certain distributional characteristics
• Tail mean: extreme negative outcomes
• Higher order moment: violation

Risk awareness is critical in some applications
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RM reflects the risk preference towards uncertainty
• Entropic risk measure: violation
• Conditional Value at Risk: extreme negative outcomes

Cannot evaluate the risk measure exactly 
• Underlying distribution is unknown
• Estimate from finite samples 

Confidence interval (CI) certifies a reliable range in risk-aware context



Towards Tight Confidence Intervals

Problem setting

◼ A risk measure 𝜌 assigns risk value 𝜌 𝐹 to a distribution 𝐹



Towards Tight Confidence Intervals

Problem setting

• CVaR: 𝛼 fractional tail mean
𝑪𝛼 𝐹 ≔ 𝐄[𝑋|𝑋 ≥ 𝐹−1(1 − 𝛼)]

• ERM: 
𝑼𝜷 𝐹 ≔ 1
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Generalization to risk measures?
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How to obtain optimal solution? 

Challenges
• Infinite-dimensional CDF
• Norm ball constraint
• Diverse and nonlinear risk measures
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Water-filling

Closed form as transformation of 𝐹𝑛, computationally efficient
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Intrinsic Optimality

LLC vs. GLC LLC vs. Ours

Our bounds improve the tightest Local Lipschitz Constant (LLC)!
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𝑝
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Numerical Experiments

Comparisons of CIs for CVaR and ERM with varying sample sizes

CVaR UCB w/ ⋅ ∞

CVaR LCB w/ ⋅ ∞

ERM UCB w/ ⋅ 1

ERM LCB w/ ⋅ 1



Summary
◼ Tight CI

◼ Apply to broad classes of RMs

◼ LC-free for specific RM

◼ Computationally efficient

◼ Motivate improved risk-aware bandit algorithms

• Spectral risk measure, including Conditional value at risk
• Distortion risk measure
• Certainty equivalent, including Entropic risk measure
• Rank-dependent expected utility

Common optimal solutions for different RMs 
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𝑅𝑡 ∼ 𝐹𝐼𝑡

Arm 𝐼𝑡

Low regret

High sample efficiency

Maximize cumulative value
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Optimism in Face of Uncertainty

Risk Value
⚫ Act greedily w.r.t.  Upper Confidence Bound 

of Risk Value 

⚫ Encourages exploring actions with the best 
possible outcomes

Tighter UCB Higher efficiency



A Meta Bandit Algorithm for Generic Risk Measures

[1] Tamkin, A., Keramati, R., Dann, C., and Brunskill, E. Distributionally-aware exploration for cvar bandits. 
In NeurIPS 2019 Workshop on Safety and Robustness on Decision Making, 2019.
[2] Cassel, A., Mannor, S., and Zeevi, A. A general approach to multi-armed bandits under risk criteria. 
In Conference On Learning Theory, pp. 1295–1306. PMLR, 2018.

• Applicable to generic risk measures
• Reduce to CVaR-UCB in [1] 

• Provable gain over GLC-UCB in [2]

Lower Confidence Band
For  𝑡 = 1:𝑁

⚫ Maintain EDF for each arm ෢𝐹𝑖,𝑡
⚫ Compute 𝐹𝑖,𝑡 for each ෢𝐹𝑖,𝑡
⚫ Choose action

𝐼𝑡 = argmax𝑖∈[𝐾] 𝜌 𝐹𝑖,𝑡
⚫ Observe 𝑅𝑡 ∼ 𝐹𝐼𝑡



A Meta Bandit Algorithm for Generic Risk Measures

[1] Tamkin, A., Keramati, R., Dann, C., and Brunskill, E. Distributionally-aware exploration for cvar bandits. 
In NeurIPS 2019 Workshop on Safety and Robustness on Decision Making, 2019.
[2] Cassel, A., Mannor, S., and Zeevi, A. A general approach to multi-armed bandits under risk criteria. 
In Conference On Learning Theory, pp. 1295–1306. PMLR, 2018.

Numerical 
experiments

Regret gain σ𝑖>1 𝑏−𝐹𝑖
−1 1−𝛼−2𝑐𝑖

2
/Δ𝑖

2

σ𝑖>1 𝑏−𝑎 2/Δ𝑖
2

• Applicable to generic risk measures
• Reduce to CVaR-UCB in [1] 

• Provable gain over GLC-UCB in [2]

Upper Confidence Band
For  𝑡 = 1:𝑁

⚫ Maintain EDF for each arm ෢𝐹𝑖,𝑡
⚫ Compute 𝐹𝑖,𝑡 for each ෢𝐹𝑖,𝑡
⚫ Choose action

𝐼𝑡 = argmax𝑖∈[𝐾] 𝜌 𝐹𝑖,𝑡
⚫ Observe 𝑅𝑡 ∼ 𝐹𝐼𝑡
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