A Distribution Optimization Framework for Risk Estimation

Hao Liang, Zhi-Quan Luo

The Chinese University of Hong Kong, Shenzhen

2024 INFORMS Optimization Society Conference 24th, March

Hao Liang, and Zhi-Quan Luo. "A distribution optimization framework for confidence bounds of risk measures." *International Conference on Machine Learning*. PMLR, 2023.

Risk awareness is critical in some applications

Healthcare/Clinical trial

Risk awareness is critical in some applications

Healthcare/Clinical trial

Avoid extreme negative outcomes

Risk awareness is critical in some applications

Healthcare/Clinical trial

Avoid extreme negative outcomes

Control violation

Risk awareness is critical in some applications

Mean Risk measures captures certain distributional characteristics

- Tail mean: extreme negative outcomes
- Higher order moment: violation

Estimation of Risk Measures (RM)

RM reflects the risk preference towards uncertainty

- Entropic risk measure: violation
- Conditional Value at Risk: extreme negative outcomes

Estimation of Risk Measures (RM)

RM reflects the risk preference towards uncertainty

- Entropic risk measure: violation
- Conditional Value at Risk: extreme negative outcomes

Cannot evaluate the risk measure exactly

- Underlying distribution is unknown
- Estimate from finite samples

Estimation of Risk Measures (RM)

RM reflects the risk preference towards uncertainty

- Entropic risk measure: violation
- Conditional Value at Risk: extreme negative outcomes

Cannot evaluate the risk measure exactly

- Underlying distribution is unknown
- Estimate from finite samples

Confidence interval (CI) certifies a reliable range in risk-aware context

Problem setting

• A risk measure ρ assigns risk value $\rho(F)$ to a distribution F

Problem setting

- A risk measure ρ assigns risk value $\rho(F)$ to a distribution F
 - CVaR: α fractional tail mean $C_{\alpha}(F) \coloneqq \mathbf{E}[X|X \ge F^{-1}(1-\alpha)]$

• ERM:

 $U_{\beta}(F) \coloneqq \frac{1}{\beta} \log \mathbf{E}_{X \sim F}[\exp(\beta X)]$ $= \mathbf{E}[X] + \frac{\beta}{2} \mathbf{V}[X] + O(|\beta|^2)$

Problem setting

 A risk measure ρ assigns risk value ρ(F) to a distribution F
 Given n iid samples X₁, X₂, …, X_n ~ F, X ∈ [a, b] Xⁿ ≔ X₁, X₂, …, X_n

Problem setting

A risk measure ρ assigns risk value $\rho(F)$ to a distribution FGiven n iid samples $X_1, X_2, \dots, X_n \sim F, X \in [a, b]$ $X^n \coloneqq X_1, X_2, \dots, X_n$

Goal: Derive **CI** of $\rho(F)$ given X^n

 $l(\rho) \le \rho(F) \le u(\rho)$, w.h.p.

Problem setting

 A risk measure ρ assigns risk value ρ(F) to a distribution F
 Given n iid samples X₁, X₂, ..., X_n ~ F, X ∈ [a, b] Xⁿ := X₁, X₂, ..., X_n
 Goal: Derive Cl of ρ(F) given Xⁿ l(ρ) ≤ ρ(F) ≤ u(ρ), w.h.p.

Classical concentration bounds on mean $|\mu - \hat{\mu}_n| \le c(\mu) \Longrightarrow$ $\hat{\mu}_n - c(\mu) \le \mu \le \hat{\mu}_n + c(\mu)$

Problem setting

 A risk measure ρ assigns risk value ρ(F) to a distribution F
 Given n iid samples X₁, X₂, ..., X_n ~ F, X ∈ [a, b] Xⁿ := X₁, X₂, ..., X_n
 Goal: Derive CI of ρ(F) given Xⁿ l(ρ) ≤ ρ(F) ≤ u(ρ), w.h.p.

Problem setting

 A risk measure ρ assigns risk value ρ(F) to a distribution F
 Given n iid samples X₁, X₂, ..., X_n ~ F, X ∈ [a, b] Xⁿ ≔ X₁, X₂, ..., X_n
 Goal: Derive Cl of ρ(F) given Xⁿ l(ρ) ≤ ρ(F) ≤ u(ρ), w.h.p.

Step 2: Concentration bound on F_n

Step 2: Concentration bound on F_n

Step 2: Concentration bound on F_n

Step 3: Global Lipschitz constant (GLC) $|\rho(F) - \rho(G)| \leq \text{GLC} \cdot ||F - G||_p, \forall F, G$

Step 2: Concentration bound on *F_n*

Step 3: Global Lipschitz constant (GLC) $|\rho(F) - \rho(G)| \leq \text{GLC} \cdot ||F - G||_p, \forall F, G$

Step 4: Global linearization $|\rho(F) - \rho(F_n)| \le \text{GLC} \cdot ||F - F_n||_p \le \text{GLC} \cdot c_p$

 $\rho(F_n) - \operatorname{GLC} \cdot c_p \le \rho(F) \le \rho(F_n) + \operatorname{GLC} \cdot c_p$

Step 3: Global Lipschitz constant (GLC) $|\rho(F) - \rho(G)| \leq \text{GLC} \cdot ||F - G||_p, \forall F, G$

Step 4: Global linearization $|\rho(F) - \rho(F_n)| \le GLC \cdot ||F - F_n||_p \le GLC \cdot c_p$ $\rho(F_n) - GLC \cdot c_p \le \rho(F) \le \rho(F_n) + GLC \cdot c_p$ LCB $l(\rho)$ UCB $u(\rho)$

Step 3: Global Lipschitz constant (GLC) $|\rho(F) - \rho(G)| \leq \text{GLC} \cdot ||F - G||_p, \forall F, G$

Optimal solutions

- Maximizer $\overline{F_n^p}$ Minimizer $\overline{F_n^p}$

Tighter Cl

$$\rho\left(\overline{F_n^p}\right) \le \rho(F_n) + \text{LC} \cdot \left\|\overline{F_n^p} - F_n\right\| \le \rho(F_n) + \text{LC} \cdot c_n^p$$

$$\rho\left(\underline{F_n^p}\right) \le \rho(F) \le \rho\left(\overline{F_n^p}\right)$$

 $||G - F_n||_{\infty} = \sup_{x} |G(x) - F_n(x)| \le c_{\infty}$

$$\rho\left(\underline{F_n^p}\right) \le \rho(F) \le \rho\left(\overline{F_n^p}\right)$$

$$\|G - F_n\|_{\infty} = \sup_{x} |G(x) - F_n(x)| \le c_{\infty}$$

$$\int_{0}^{1} \int_{a}^{c_{\infty}} \int_{F_n}^{c_{\infty}} \int_{Bandwith} \le c_{\infty}$$

Challenges

- Infinite-dimensional CDF
- Norm ball constraint
- **Diverse** and **nonlinear** risk measures

Challenges

- Infinite-dimensional CDF
- Norm ball constraint
- **Diverse** and **nonlinear** risk measures

-> How to obtain optimal solution?

Challenges

- Infinite-dimensional CDF
- Norm ball constraint
- **Diverse** and **nonlinear** risk measures

-> How to obtain optimal solution?

Closed form as **transformation** of F_n , computationally efficient

Challenges

- Infinite-dimensional CDF
- Norm ball constraint
- Diverse and nonlinear risk measures

-> How to obtain optimal solution?

Closed form as **transformation** of F_n , computationally efficient

Challenges

- Infinite-dimensional CDF
- Norm ball constraint
- Diverse and nonlinear risk measures

Closed form as **transformation** of F_n , computationally efficient

Intrinsic Optimality

Ours vs. GLC

$$\rho\left(\overline{F_n^p}\right) < \rho(F_n) + \text{GLC} \cdot c_n^p$$

$$GLC = \sup_{G,G' \in D(a,b)} \frac{\rho(G) - \rho(G')}{\|G - G'\|} \longrightarrow LLC = \sup_{G,G' \in B(F,c)} \frac{\rho(G) - \rho(G')}{\|G - G'\|}$$

Intrinsic Optimality

$$GLC = \sup_{G,G' \in D(a,b)} \frac{\rho(G) - \rho(G')}{\|G - G'\|} \longrightarrow LLC = \sup_{G,G' \in B(F,c)} \frac{\rho(G) - \rho(G')}{\|G - G'\|}$$

Intrinsic Optimality

Our bounds improve the **tightest Local Lipschitz Constant (LLC)** $\rho\left(\overline{F_n^p}\right) < \rho(F_n) + \text{LLC} \cdot c_n^p < \rho(F_n) + \text{GLC} \cdot c_n^p$

LLC vs. GLC

LLC vs. Ours

RM	$\mathrm{LLC} \ (p=\infty)$	$\mathrm{GLC}\;(p=\infty)$	Improvement
CVaR	$\frac{b-F_n^{-1}((1-\alpha-c)^+)}{\alpha}$	$\frac{b-a}{\alpha}$	1
SRM	$\left\ \phi(\underline{F_n^{\infty}})\right\ _1$	$(b-a)\phi(1)$	\checkmark
DRM	$\left\ g'(1-\underline{F_n^{\infty}})\right\ _1$	$(b-a)\left\ g'\right\ _{\infty}$	\checkmark
ERM	$\frac{\exp(\beta b) - \exp(\beta a)}{\beta \int_{a}^{b} \exp(\beta x) dF_{n}^{\infty}(x))}$	$\frac{\exp(\beta(b-a))-1}{\beta}$	\checkmark
RDEU	$\left\ w'(\underline{F_n^{\infty}})\overline{v'} \right\ _1$	$\left\ w' \right\ _{\infty} \left\ v' \right\ _{1}$	1

RM	CVaR	SRM	DRM	ERM	RDEU
LLC	$\frac{b - F^{-1}(1 - \alpha - c)}{\alpha}$	$\ \phi(\underline{\mathit{F}^{\infty}})\ _1$	$\ g'(1-\underline{\mathit{F}^{\infty}})\ _1$	$\frac{\exp(\beta b) - \exp(\beta a)}{\int_{a}^{b} \exp(\beta x) d\underline{F^{\infty}}(x)}$	$\ \mathbf{w}'(\underline{F^{\infty}})\mathbf{v}' \ _1$
$\frac{\mathbf{T}\!\left(\overline{F^{\infty}}\right)\!-\!\mathbf{T}(F)}{c}$	$\frac{b - F^{-1}(1 - \alpha)}{\alpha}$	$\left\ \phi(\mathbf{F})\right\ _1$	$\left\ g'(1-\mathbf{F})\right\ _1$	$\frac{\exp(\beta b) - \exp(\beta a)}{\beta \int_{a}^{b} \exp(\beta x) dF(x)}$	$\left\ w'(F)v' \right\ _1$
Improvement	\checkmark	\checkmark	\checkmark		\checkmark

Numerical Experiments

Comparisons of CIs for **CVaR** and **ERM** with varying sample sizes

Summary

Tight Cl

- Apply to **broad** classes of RMs
 - Spectral risk measure, including Conditional value at risk
 - Distortion risk measure
 - Certainty equivalent, including Entropic risk measure
 - Rank-dependent expected utility
- LC-free for specific RM

Common optimal solutions for different RMs

- Computationally efficient
- Motivate improved risk-aware bandit algorithms

Applications to Risk-aware Multi-armed Bandits

Arm 1

Arm 2

Arm K

 $\bullet \bullet \bullet$

Applications to Risk-aware Multi-armed Bandits

Applications to Risk-sensitive Multi-armed Bandits

Maximize cumulative value $\rho(F_{l_t})$

Applications to Risk-sensitive Multi-armed Bandits

Maximize cumulative value $\rho(F_{l_t})$

Applications to Risk-sensitive Multi-armed Bandits

Maximize cumulative value $\rho(F_{I_t})$

Low regret

High sample efficiency

Optimism in Face of Uncertainty

- Act greedily w.r.t. Upper Confidence Bound of Risk Value
- Encourages exploring actions with the best possible outcomes

A Meta Bandit Algorithm for Generic Risk Measures

Lower Confidence Band

For t = 1: N

- Maintain EDF for each arm $\widehat{F_{i,t}}$
- Compute $\overline{F_{i,t}}$ for each $\widehat{F_{i,t}}$
- Choose action
 - $I_t = \operatorname{argmax}_{i \in [K]} \rho(\overline{F_{i,t}})$
- Observe $R_t \sim F_{I_t}$
- Applicable to generic risk measures
- Reduce to CVaR-UCB in [1]
- Provable gain over GLC-UCB in [2]

 [1] Tamkin, A., Keramati, R., Dann, C., and Brunskill, E. Distributionally-aware exploration for cvar bandits. In NeurIPS 2019 Workshop on Safety and Robustness on Decision Making, 2019.
 [2] Cassel, A., Mannor, S., and Zeevi, A. A general approach to multi-armed bandits under risk criteria. In Conference On Learning Theory, pp. 1295–1306. PMLR, 2018.

A Meta Bandit Algorithm for Generic Risk Measures

6000

4000

2000

500

1000

1500

Number of Pulls

2000

2500

- Applicable to generic risk measures
- Reduce to CVaR-UCB in [1]
- Provable gain over GLC-UCB in [2] ullet

[1] Tamkin, A., Keramati, R., Dann, C., and Brunskill, E. Distributionally-aware exploration for cvar bandits. In NeurIPS 2019 Workshop on Safety and Robustness on Decision Making, 2019. [2] Cassel, A., Mannor, S., and Zeevi, A. A general approach to multi-armed bandits under risk criteria. In Conference On Learning Theory, pp. 1295–1306. PMLR, 2018.

Thank You

Now seeking postdoc and research positions! Feel free to contact via Email haoliang1@link.cuhk.edu.cn