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Motivation: Real-World Networked Systems

SMART CITY

(a) Grid (b) Transportation (c) Smart city
Key challenges
+ Scalability: Exponential state-action space growth
+ Environment changes: traffic patterns change, user demands vary
Current methods either scale OR generalize, but rarely both



Central Research Problem

Can we design a provably generalizable AND scalable MARL algorithm for networked
systems?

Our answer: Yes!
Generalizable and Scalable Actor-Critic (GSAC)

Key insights
1) Locality + Causality — Scalability

+ Locality: Exploit local structure

+ Causality: Identify minimal relevant features
2) Meta-training — Generalization



Problem Setup: Networked MARL
.\?.EZ « Agentiobserves local state s; € S;
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+ Decentralized dynamics
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where sxr := (Sj)ien;-
+ Njis the neighbors of agent i w; = (8)jen;

Agent i's next state depends only on its neighborhood states and its own action



Problem Setup: Networked MARL

* Localized policy: wf"(ai | sn;)

n

+ Joint policy 7¥(a | s) := [, wf”(ai | sn7)
+ Each agent receives a local reward r;(s;, a;)

* Global reward .
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Networked MARL under Domain Generalization

Inspired by single-agent domain generalization [HFL*22]"
Domain-specific dynamics for each agenti: s; = (si1,. .., Sig)

Si,i(t + 1) :ﬁj (Cﬁ\/i_j © S/\[i(t), C?J ® a,-(t), C;‘; ©® wy, E?J(I)) , 3)

+ w;: domain factor, encodes environment changes/shifts
+ c: causal masks, invariant across domains
* fij: transition function, invariant
* €. noise
Train on M i.i.d. source domains (&1, ..., Ey), adapt to a target domain Ey11

'Biwei Huang, et al. "Adarl: What, where, and how to adapt in transfer reinforcement learning”. ICLR
2022.



Challenge 1: Scalability

+ Curse of dimensionality #(s,a) = |S;|* x |.A;|"

+ Local Q-function depends on the global (s,a) = (s1,...,Sy;a1,...,a,)

Q7 (s, @) == Ea(yymro([s(0)) [Z Vri(si(t), ai(t)) ‘5(0) =s,a(0) = a]
- Qi(s,0)

+ Exponential decay property [QWL22]? Exponential decay
dependence!

+ Nf: k-hop neighborhood of agent i P

+ r-hop truncation as efficient approximation OO OO -

|QF (sar=»an=) — QF (s,a)| < O(y")

2Qu, Guannan, Adam Wierman, and Na Li. “Scalable reinforcement learning for multiagent networked
systems.” Operations Research, 70(6): 3601-3628, 2022.



Challenge 1: Scalability

Without truncation,
+ dimension = dim(S x A) = > .. , (&} + d), size exponential in n!
k-hop truncation
* Input: (syx,anx)
+ dimension = dim(Sy» X Axx) = Zje/\/’,“‘ (@ + d), still LINEAR in neighborhood!

Our contribution: Approximately Compact Representations (ACRs)

Further reduce to subsets of sy« while maintaining approximation accuracy



More Scalable via Approximately Compact Representations

Core idea: Identify within s+ that influence k-step rewards
Recursion
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More Scalable via ACRs
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More Scalable via ACRs
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More Scalable via ACRs

Core idea: Identify within s+ that influence k-step rewards
Recursion
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More Scalable via ACRs

Core idea: Identify within s+ that influence k-step rewards
Output:
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GSAC Algorithm Overview

Four Sequential Phases
+ Phase 1: Causal Discovery and Domain Estimation
— Estimate causal masks ¢; and domain factors w per domain
+ Phase 2: ACR Construction
— Build ACR using causal masks
+ Phase 3: Meta Actor-Critic Learning

— Train domain-shared policy wf" across M source domains
— Condition on ACR inputs: (s}, wj)
— Output: 6; for each agent i's policy
+ Phase 4: Fast Adaptation
— Collect T, trajectories in new domain to estimate WM

— Deploy wf)"(-|s}’\f[_, d;ﬁ’l), no tuning of 6

+1



Meta Actor-Critic
Outer loop (iterationk = 1,2, --- | K)

+ Sample domain index
* Inner loop (iterationt=1,2,--- ., T)

— Critic update: TD learning on ACR inputs
@f(sj’\/ih— , a/\/ln,cbj’vim) (1 =)0 [ri(t) + véf_l(next)]

+ Actor update: policy gradient r
. 1 A .
&i(k) <> 7' = 3" Q(ACR) - Vg, logn|"®
=0 nje/\/l“
0i(k + 1) < 0:(k) + 1. - 8i(k)

Output: 0; = 0;(K)
Key: All computation uses compact ACR inputs!



Convergence

Theorem (Critic error bound)
With high probability, after T inner iterations:
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TD error ACR error Domain estimation error.

Theorem (Policy gradient convergence)
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Adaptation Guarantee

Theorem (Adaptation gap)

For new domain, after collecting T, adaptation trajectories:

K ’ B 1
Jsource _J(T(H ('|‘JJM+1)) >0 (T> .
a

+ Meta-training on M domains provides good initialization/zero-shot performance

+ The expected return is close to the meta-policy’'s average performance on source domains

+ Adaptation gap decreases at a rate of © (Ti)



Benefits of ACR

Method Input Dimension Approx. Error Size
n
Full State s Z d; 0 all agents X
j=1
Truncation [QWL22]  spx Z d; oH")
JENF
GSAC (ACR) ke < Y4 o(") Much Lower v/
JEN

* Faster convergence
* Lower memory

+ Better generalization



Experimental Setup

« Benchmark: Wireless communication
network [Zoc19]?

+ nusers, each with packet queue d;

« Packet arrival ~ Ber(p;)

* s;: que status
« a; = AP/null
« Success if no collision, Reward + 1

user [l accesspoint

9Zocca, Alessandro. "Temporal starvation in
multi-channel csma networks: an analytical * Interaction graph: Users sharing APs
framevx{ork.” A;M SIGMETRICS Performance are neighbors
Evaluation Review (2019).



Training Performance

* 3 source domains: p € {0.2,0.5,0.8}

+ Consistent improvement across all
grid sizes

+ Scalability: 3x3 (9 agents) — 4x4 (16
agents)

(a) grid size 3 (b) grid size 4

Figure: GSAC Training for different grid sizes.




Adaptation Performance

GSAC vs. Learning From Scratch (LFS) for different settings

Generalization Phase: GSAC vs. From Scratch Generalization Phase: GSAC vs. From Scratch Generalization Phase: GSAC vs. From Scratch Generalization Phase: GSAC vs. From Scratch

] e I s W Mw««pr Y e K

(a) grid size 3 (b) grid size 4 (3) Prarget = 0.4 (b) prarger = 0.6
Figure: Adaptation performance comparison Figure: Adaptation performance comparison
for different grid sizes. for different target domains



Comparison to Prior Work

Method Scalability Generalization Theory
SAC [QWL22] Truncation v/ X Convergence v
AdaRL [HFLT22] Single-agent X v Causality v/
GSAC (Ours) ACRs v v All phases v

+ First to combine causality with networked MARL
+ First end-to-end guarantees for generalization + scalability
+ ACR framework



Future Research Directions

« Continuous spaces: continuous state/action space, function approximation w/
ACRs

+ Large-scale networked systems:

— Traffic networks
— power grids
— robotics swarms

+ Partial observability



Key Takeaways
Causality + Locality => Scalable & Generalizable Networked MARL

+ GSAC: First provably generalizable + scalable MARL for networked systems

* Technical innovation

— ACRs via causal structure
— Meta actor-critic with domain-conditioned policies

+ Theoretical guarantees

— Approximation error
— Convergence
— Adaptation

+ Empirical validation

— Scalability
— Fast adaptation



Thank you!
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