Causality Meets Locality: Provably Generalizable and Scalable Policy Learning for Networked Systems

Hao Liang King's College London

Joint work with

Shuqing Shi

Yudi Zhang (TU/e)

Biwei Huang (UCSD)

Yali Du (KCL)

H. Liang*, S. Shi*, Y. Zhang, B. Huang, Y. Du. "Causality Meets Locality: Provably Generalizable and Scalable Policy Learning for Networked Systems." NeurIPS 2025 (Spotlight).

Motivation: Real-World Networked Systems

Key challenges

- Scalability: Exponential state-action space growth
- Environment changes: traffic patterns change, user demands vary

Current methods either scale OR generalize, but rarely both

Central Research Problem

Can we design a provably **generalizable** AND **scalable** MARL algorithm for networked systems?

Our answer: Yes!

Generalizable and **S**calable **A**ctor-**C**ritic (GSAC)

Key insights

- 1) **Locality + Causality** → Scalability
 - Locality: Exploit local structure
 - Causality: Identify minimal relevant features
- 2) Meta-training \rightarrow Generalization

Problem Setup: Networked MARL

- Graph: $\mathscr{G} = (\mathscr{N},\mathscr{E})$
- $\mathcal{N} := (1, 2, \cdots, n)$
- \mathcal{N}_i is the neighbors of agent i

- Agent i observes local state $\mathbf{s}_i \in \mathcal{S}_i$
- Selects a local action $\mathbf{a}_i \in \mathcal{A}_i$
- Global state $\mathbf{s} = (\mathbf{s}_1, \dots, \mathbf{s}_n)$
- Joint action $\mathbf{a} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$
- Decentralized dynamics

$$P(\mathbf{s}(t+1) \mid \mathbf{s}(t), \mathbf{a}(t)) = \prod_{i=1}^{n} P_i(\mathbf{s}_i(t+1) \mid \mathbf{s}_{\mathcal{N}_i}(t), \mathbf{a}_i(t)),$$

where $\mathbf{s}_{\mathcal{N}_i} := (\mathbf{s}_j)_{j \in \mathcal{N}_i}$.

Agent i's next state depends only on its neighborhood states and its own action

Problem Setup: Networked MARL

- Localized policy: $\pi_i^{ heta_i}(\mathbf{a}_i \mid \mathbf{s}_{\mathcal{N}_i})$
- Joint policy $\pi^{\theta}(\mathbf{a} \mid \mathbf{s}) := \prod_{i=1}^n \pi_i^{\theta_i}(\mathbf{a}_i \mid \mathbf{s}_{\mathcal{N}_i})$
- Each agent receives a local reward $r_i(\mathbf{s}_i, \mathbf{a}_i)$
- · Global reward

$$r(\mathbf{s}, \mathbf{a}) := \frac{1}{n} \sum_{i=1}^n r_i(\mathbf{s}_i, \mathbf{a}_i)$$

Goal: learn the optimal policy π^{θ}

$$\max_{\theta \in \Theta} J(\theta) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \cdot r(\mathbf{s}(t), \mathbf{a}(t))\right]. \tag{2}$$

Networked MARL under Domain Generalization

Inspired by *single-agent* domain generalization [HFL⁺22]¹ Domain-specific dynamics for each agent i: $\mathbf{s}_i = (s_{i,1}, \dots, s_{i,d_i^s})$

$$s_{i,j}(t+1) = f_{i,j}\left(\mathbf{c}_{\mathcal{N}_{i,j}}^{\mathbf{s}} \odot \mathbf{s}_{\mathcal{N}_{i}}(t), \mathbf{c}_{i,j}^{\mathbf{a}} \odot \mathbf{a}_{i}(t), \mathbf{c}_{i,j}^{\boldsymbol{\omega}} \odot \boldsymbol{\omega}_{i}, \epsilon_{i,j}^{\mathbf{s}}(t)\right), \tag{3}$$

- ω_i : domain factor, encodes environment changes/shifts
- c: causal masks, invariant across domains
- $f_{i,j}$: transition function, **invariant**
- $\epsilon_{i,j}$: noise

Train on M i.i.d. source domains $\langle \mathcal{E}_1, \dots, \mathcal{E}_M \rangle$, adapt to a target domain \mathcal{E}_{M+1}

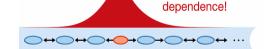
¹Biwei Huang, et al. "Adarl: What, where, and how to adapt in transfer reinforcement learning". ICLR 2022.

Challenge 1: Scalability

- Curse of dimensionality $\#(\mathbf{s},\mathbf{a}) = |\mathcal{S}_i|^n \times |\mathcal{A}_i|^n$
- Local *Q*-function depends on the global $(\mathbf{s},\mathbf{a})=(\mathbf{s}_1,\ldots,\mathbf{s}_n;\mathbf{a}_1,\ldots,\mathbf{a}_n)$

$$Q_i^{\pi}(\mathbf{s}, \mathbf{a}) := \mathbb{E}_{\mathbf{a}(t) \sim \pi^{\theta}(\cdot | \mathbf{s}(t))} \left[\sum_{t=0}^{\infty} \gamma^t r_i(\mathbf{s}_i(t), \mathbf{a}_i(t)) \, \middle| \, \mathbf{s}(0) = \mathbf{s}, \, \mathbf{a}(0) = \mathbf{a} \right]$$
 $Q_i^{\pi}(\mathbf{s}, \mathbf{a}) := \mathbb{E}_{\mathbf{a}(t) \sim \pi^{\theta}(\cdot | \mathbf{s}(t))} \left[\sum_{t=0}^{\infty} \gamma^t r_i(\mathbf{s}_i(t), \mathbf{a}_i(t)) \, \middle| \, \mathbf{s}(0) = \mathbf{s}, \, \mathbf{a}(0) = \mathbf{a} \right]$

- Exponential decay property [QWL22]²
- \mathcal{N}_i^{κ} : κ -hop neighborhood of agent i
- κ -hop truncation as efficient approximation



Exponential decay

$$\left|Q_i^{\pi}(\mathbf{s}_{\mathcal{N}_i^{\kappa}},\mathbf{a}_{\mathcal{N}_i^{\kappa}})-Q_i^{\pi}(\mathbf{s},\mathbf{a})\right|\leq \mathcal{O}(\gamma^{\kappa})$$

²Qu, Guannan, Adam Wierman, and Na Li. "Scalable reinforcement learning for multiagent networked systems." *Operations Research*, 70(6): 3601–3628, 2022.

Challenge 1: Scalability

Without truncation,

• dimension = dim $(S \times A) = \sum_{i \in \mathcal{N}} (d_i^s + d_i^a)$, size **exponential** in n!

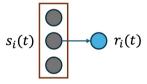
κ -hop truncation

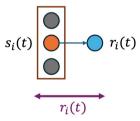
- Input: $(\mathbf{s}_{\mathcal{N}_i^{\kappa}}, \mathbf{a}_{\mathcal{N}_i^{\kappa}})$
- dimension = $\dim(\mathcal{S}_{\mathcal{N}^\kappa_i} \times \mathcal{A}_{\mathcal{N}^\kappa_i}) = \sum_{j \in \mathcal{N}^\kappa_i} (d^\mathbf{s}_j + d^\mathbf{a}_i)$, still **LINEAR** in neighborhood!

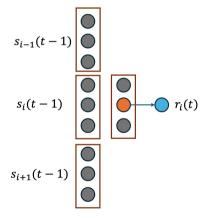
Our contribution: Approximately Compact Representations (ACRs)

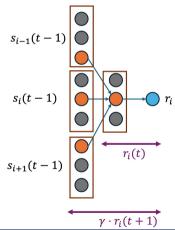
Further reduce to subsets of $\mathbf{s}_{\mathcal{N}_i^\kappa}$ while maintaining approximation accuracy

More Scalable via Approximately Compact Representations



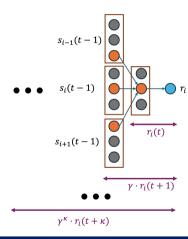






Core idea: Identify minimal variables within $\mathbf{s}_{\mathcal{N}_i^{\kappa}}$ that influence κ -step rewards

Output: $\mathbf{s}^{\circ}_{\mathcal{N}^{\kappa}}$



GSAC Algorithm Overview

Four Sequential Phases

- Phase 1: Causal Discovery and Domain Estimation
 - Estimate causal masks \mathbf{c}_i and domain factors $\hat{\boldsymbol{\omega}}$ per domain
- Phase 2: ACR Construction
 - Build ACR using causal masks
- Phase 3: Meta Actor-Critic Learning
 - Train domain-shared policy $\pi_i^{\theta_i}$ across M source domains
 - Condition on ACR inputs: $(\mathbf{s}_{\mathcal{N}_i}^{\circ}, \hat{\boldsymbol{\omega}}_{\mathcal{N}_i}^{\circ})$
 - Output: $\bar{\theta}_i$ for each agent i's policy
- Phase 4: Fast Adaptation
 - Collect T_a trajectories in new domain to estimate $\hat{\omega}^{M+1}$
 - Deploy $\pi_i^{ar{ heta}_i}(\cdot|\mathbf{s}_{\mathcal{N}_i}^{\circ},\hat{\boldsymbol{\omega}}_{\mathcal{N}_i}^{M+1})$, no tuning of heta

Meta Actor-Critic

Outer loop (iteration $k = 1, 2, \dots, K$)

- Sample domain index
- Inner loop (iteration $t = 1, 2, \dots, T$)
 - Critic update: TD learning on ACR inputs

$$\hat{Q}_i^t(\mathbf{s}_{\mathcal{N}_i^{\kappa}}^{\circ}, \mathbf{a}_{\mathcal{N}_i^{\kappa}}, \hat{\boldsymbol{\omega}}_{\mathcal{N}_i^{\kappa}}^{\circ}) \leftarrow (1 - \alpha_{t-1})\hat{Q}_i^{t-1} + \alpha_{t-1}\left[r_i(t) + \gamma \hat{Q}_i^{t-1}(\mathsf{next})\right]$$

· Actor update: policy gradient

$$\begin{split} \hat{g}_i(k) \leftarrow \sum_{t=0}^T \gamma^t \cdot \frac{1}{n} \sum_{j \in \mathcal{N}_i^\kappa} \hat{Q}_j^T(\mathsf{ACR}) \cdot \nabla_{\theta_i} \log \pi_i^{\theta_i(k)} \\ \theta_i(k+1) \leftarrow \theta_i(k) + \eta_k \cdot \hat{g}_i(k) \end{split}$$

Output: $\bar{\theta}_i = \theta_i(K)$

Key: All computation uses compact ACR inputs!

Convergence

Theorem (Critic error bound)

With high probability, after T inner iterations:

$$|Q_i(\mathbf{s},\mathbf{a},oldsymbol{\omega}) - \hat{Q}_i^T(\mathbf{s}_{\mathcal{N}_i^\kappa},\mathbf{a}_{\mathcal{N}_i^\kappa},\hat{oldsymbol{\omega}}_{\mathcal{N}_i^\kappa})| \leq \mathcal{O}\left(\underbrace{rac{1}{\sqrt{T+t_0}}}_{ extit{TD error}} + \underbrace{rac{2c
ho^{\kappa+1}}{(1-\gamma)^2}}_{ extit{ACR error}} + \underbrace{\sqrt{rac{1}{T_e}}}_{ extit{Domain estimation error}}
ight).$$

Theorem (Policy gradient convergence)

$$\frac{\sum_{k=0}^{K-1} \eta_k \|\nabla J(\theta(k))\|^2}{\sum_{k=0}^{K-1} \eta_k} \leq \tilde{\mathcal{O}} \left(\underbrace{\frac{1}{\sqrt{K+1}}}_{optimization\ error} + \rho^{\kappa+1} + \sqrt{\frac{1}{T_e}} + \underbrace{\sqrt{\frac{1}{M}}}_{domain\ generalization} \right)$$

Adaptation Guarantee

Theorem (Adaptation gap)

For new domain, after collecting T_a adaptation trajectories:

$$J_{source} - J(\pi^{ heta^K}(\cdot|\hat{oldsymbol{\omega}}^{M+1})) \geq \Theta\left(rac{1}{T_a}
ight).$$

- Meta-training on *M* domains provides good initialization/zero-shot performance
- The expected return is close to the meta-policy's average performance on source domains
- Adaptation gap decreases at a rate of $\Theta\left(\frac{1}{T_a}\right)$

Benefits of ACR

Method	Input	Dimension	Approx. Error	Size
Full State	s	$\sum_{i=1}^n d_i^s$	0	all agents X
Truncation [QWL22]	$\mathbf{s}_{\mathcal{N}_i^\kappa}$	$\sum_{j \in \mathcal{N}_i^\kappa}^{j-1} d_j^s$	$\mathcal{O}(\gamma^\kappa)$	κ -hop neighbors $lacktriangle$
GSAC (ACR)	$\mathbf{s}_{\mathcal{N}_i^\kappa}^\circ$	$< \sum_{j \in \mathcal{N}_i^{\kappa}}^{\sum_i d_j^{s}} d_j^{s}$	$\mathcal{O}(\gamma^\kappa)$	Much Lower ✓

- Faster convergence
- Lower memory
- Better generalization

Experimental Setup

- Benchmark: Wireless communication network [Zoc19]^a
- n users, each with packet queue d_i
- Packet arrival $\sim \mathsf{Ber}(p_i)$
- \mathbf{s}_i : que status
- $\mathbf{a}_i = AP/null$
- Success if no collision, Reward + 1



Interaction graph: Users sharing APs are neighbors

^aZocca, Alessandro. "Temporal starvation in multi-channel csma networks: an analytical framework." ACM SIGMETRICS Performance Evaluation Review (2019).

Training Performance

- 3 source domains: $p \in \{0.2, 0.5, 0.8\}$
- Consistent improvement across all grid sizes
- Scalability: 3×3 (9 agents) → 4×4 (16 agents)

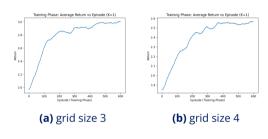


Figure: GSAC Training for different grid sizes.

Adaptation Performance

GSAC vs. Learning From Scratch (LFS) for different settings

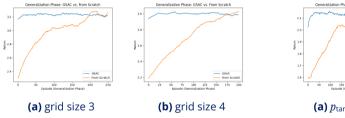


Figure: Adaptation performance comparison for different grid sizes.

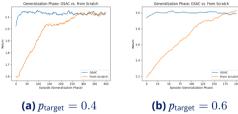


Figure: Adaptation performance comparison for different target domains

Comparison to Prior Work

Method	Scalability	Generalization	Theory
SAC [QWL22]	Truncation 🗸	×	Convergence 🗸
AdaRL [HFL ⁺ 22]	Single-agent 🗶	✓	Causality 🗸
GSAC (Ours)	ACRs ✓	✓	All phases ✓

- · First to combine causality with networked MARL
- First end-to-end guarantees for generalization + scalability
- ACR framework

Future Research Directions

- Continuous spaces: continuous state/action space, function approximation w/ ACRs
- · Large-scale networked systems:
 - Traffic networks
 - power grids
 - robotics swarms
- Partial observability

Key Takeaways

Causality + Locality ⇒ Scalable & Generalizable Networked MARL

- GSAC: First provably generalizable + scalable MARL for networked systems
- Technical innovation
 - ACRs via causal structure
 - Meta actor-critic with domain-conditioned policies
- Theoretical guarantees
 - Approximation error
 - Convergence
 - Adaptation
- Empirical validation
 - Scalability
 - Fast adaptation

Thank you!

References I

- Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, and Kun Zhang, Adarl: What, where, and how to adapt in transfer reinforcement learning, International Conference on Learning Representations, 2022.
- Guannan Qu, Adam Wierman, and Na Li, *Scalable reinforcement learning for multiagent networked systems*, Operations Research **70** (2022), no. 6, 3601–3628.
- Alessandro Zocca, *Temporal starvation in multi-channel csma networks: an analytical framework*, ACM SIGMETRICS Performance Evaluation Review **46** (2019), no. 3, 52–53.