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Motivation: Real-World Networked Systems

(a) Grid (b) Transportation (c) Smart city

Key challenges
• Scalability: Exponential state-action space growth

• Environment changes: traffic patterns change, user demands vary

Current methods either scale OR generalize, but rarely both
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Central Research Problem

Can we design a provably generalizable AND scalableMARL algorithm for networked
systems?

Our answer: Yes!

Generalizable and Scalable Actor-Critic (GSAC)

Key insights
1) Locality + Causality→ Scalability

• Locality: Exploit local structure
• Causality: Identify minimal relevant features

2) Meta-training→ Generalization
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Problem Setup: Networked MARL

• Graph: G = (N ,E )

• N := (1, 2, · · · , n)
• Ni is the neighbors of agent i

• Agent i observes local state si ∈ Si
• Selects a local action ai ∈ Ai

• Global state s = (s1, . . . , sn)

• Joint action a = (a1, . . . , an)

• Decentralized dynamics

P(s(t+ 1) | s(t), a(t)) =
n∏

i=1

Pi
(
si(t+ 1) | sNi(t), ai(t)

)
, (1)

where sNi := (sj)j∈Ni .

Agent i’s next state depends only on its neighborhood states and its own action
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Problem Setup: Networked MARL

• Localized policy: πθi
i (ai | sNi)

• Joint policy πθ(a | s) :=
∏n

i=1 π
θi
i (ai | sNi)

• Each agent receives a local reward ri(si, ai)
• Global reward

r(s, a) :=
1

n

n∑
i=1

ri(si, ai)

Goal: learn the optimal policy πθ

max
θ∈Θ

J(θ) := E

[ ∞∑
t=0

γt · r(s(t), a(t))

]
. (2)
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Networked MARL under Domain Generalization

Inspired by single-agent domain generalization [HFL+22]1

Domain-specific dynamics for each agent i: si = (si,1, . . . , si,dsi )

si,j(t+ 1) = fi,j
(
csNi,j ⊙ sNi(t), c

a
i,j ⊙ ai(t), cωi,j ⊙ ωi, ϵ

s
i,j(t)

)
, (3)

• ωi: domain factor, encodes environment changes/shifts

• c: causal masks, invariant across domains

• fi,j: transition function, invariant
• ϵi,j: noise

Train on M i.i.d. source domains ⟨E1, . . . , EM⟩, adapt to a target domain EM+1

1Biwei Huang, et al. ”Adarl: What, where, and how to adapt in transfer reinforcement learning”. ICLR
2022.
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Challenge 1: Scalability

• Curse of dimensionality #(s, a) = |Si|n × |Ai|n

• Local Q-function depends on the global (s, a) = (s1, . . . , sn; a1, . . . , an)

Qπ
i (s, a) := Ea(t)∼πθ(·|s(t))

[ ∞∑
t=0

γtri(si(t), ai(t))
∣∣∣ s(0) = s, a(0) = a

]

• Exponential decay property [QWL22]2

• N κ
i : κ-hop neighborhood of agent i

• κ-hop truncation as efficient approximation∣∣Qπ
i (sNκ

i
, aNκ

i
)− Qπ

i (s, a)
∣∣ ≤ O(γκ)

2Qu, Guannan, Adam Wierman, and Na Li. ”Scalable reinforcement learning for multiagent networked
systems.” Operations Research, 70(6): 3601–3628, 2022.
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Challenge 1: Scalability

Without truncation,

• dimension = dim(S ×A) =
∑

j∈N (ds
j + da

j ), size exponential in n!

κ-hop truncation

• Input: (sNκ
i
, aNκ

i
)

• dimension = dim(SNκ
i
×ANκ

i
) =

∑
j∈Nκ

i
(ds

j + da
i ), still LINEAR in neighborhood!

Our contribution: Approximately Compact Representations (ACRs)

Further reduce to subsets of sNκ
i
while maintaining approximation accuracy
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More Scalable via Approximately Compact Representations
Core idea: Identify minimal variables within sNκ

i
that influence κ-step rewards

Recursion

Figure
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More Scalable via ACRs
Core idea: Identify minimal variables within sNκ

i
that influence κ-step rewards

Output: s◦Nκ
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GSAC Algorithm Overview

Four Sequential Phases
• Phase 1: Causal Discovery and Domain Estimation

— Estimate causal masks ci and domain factors ω̂ per domain

• Phase 2: ACR Construction
— Build ACR using causal masks

• Phase 3: Meta Actor-Critic Learning
— Train domain-shared policy πθi

i across M source domains
— Condition on ACR inputs: (s◦Ni

, ω̂◦
Ni
)

— Output: θ̄i for each agent i’s policy
• Phase 4: Fast Adaptation

— Collect Ta trajectories in new domain to estimate ω̂M+1

— Deploy πθ̄i
i (·|s◦Ni

, ω̂M+1
Ni

), no tuning of θ
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Meta Actor-Critic
Outer loop (iteration k = 1, 2, · · · ,K)

• Sample domain index

• Inner loop (iteration t = 1, 2, · · · , T)
— Critic update: TD learning on ACR inputs

Q̂t
i(s

◦
Nκ

i
, aNκ

i
, ω̂◦

Nκ
i
)← (1− αt−1)Q̂t−1

i + αt−1

[
ri(t) + γQ̂t−1

i (next)
]

• Actor update: policy gradient

ĝi(k)←
T∑

t=0

γt · 1
n

∑
j∈Nκ

i

Q̂T
j (ACR) · ∇θi logπ

θi(k)
i

θi(k+ 1)← θi(k) + ηk · ĝi(k)

Output: θ̄i = θi(K)
Key: All computation uses compact ACR inputs!
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Convergence

Theorem (Critic error bound)
With high probability, after T inner iterations:

|Qi(s, a,ω)− Q̂T
i (sNκ

i
, aNκ

i
, ω̂Nκ

i
)| ≤ O

 1√
T+ t0︸ ︷︷ ︸
TD error

+
2cρκ+1

(1− γ)2︸ ︷︷ ︸
ACR error

+

√
1

Te︸ ︷︷ ︸
Domain estimation error

 ,

Theorem (Policy gradient convergence)

∑K−1
k=0 ηk∥∇J(θ(k))∥2∑K−1

k=0 ηk
≤ Õ

 1√
K+ 1︸ ︷︷ ︸

optimization error

+ρκ+1 +

√
1

Te
+

√
1

M︸︷︷︸
domain generalization

 .
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Adaptation Guarantee

Theorem (Adaptation gap)
For new domain, after collecting Ta adaptation trajectories:

Jsource − J(πθK
(·|ω̂M+1)) ≥ Θ

(
1

Ta

)
.

• Meta-training on M domains provides good initialization/zero-shot performance

• The expected return is close to the meta-policy’s average performance on source domains

• Adaptation gap decreases at a rate ofΘ
(

1
Ta

)
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Benefits of ACR

Method Input Dimension Approx. Error Size

Full State s
n∑

j=1

dsj 0 all agents 7

Truncation [QWL22] sNκ
i

∑
j∈Nκ

i

dsj O(γκ) κ-hop neighbors s

GSAC (ACR) s◦Nκ
i

<
∑
j∈Nκ

i

dsj O(γκ) Much Lower 3

• Faster convergence

• Lower memory

• Better generalization
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Experimental Setup

• Benchmark: Wireless communication
network [Zoc19]a

• n users, each with packet queue di
• Packet arrival ∼ Ber(pi)
• si: que status
• ai = AP/null
• Success if no collision, Reward + 1
aZocca, Alessandro. ”Temporal starvation in

multi-channel csma networks: an analytical
framework.” ACM SIGMETRICS Performance
Evaluation Review (2019).

• Interaction graph: Users sharing APs
are neighbors
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Training Performance

• 3 source domains: p ∈ {0.2, 0.5, 0.8}
• Consistent improvement across all
grid sizes

• Scalability: 3×3 (9 agents)→ 4×4 (16
agents)

(a) grid size 3 (b) grid size 4

Figure: GSAC Training for different grid sizes.
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Adaptation Performance

GSAC vs. Learning From Scratch (LFS) for different settings

(a) grid size 3 (b) grid size 4

Figure: Adaptation performance comparison
for different grid sizes.

(a) ptarget = 0.4 (b) ptarget = 0.6

Figure: Adaptation performance comparison
for different target domains
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Comparison to Prior Work

Method Scalability Generalization Theory

SAC [QWL22] Truncation 3 7 Convergence 3

AdaRL [HFL+22] Single-agent 7 3 Causality 3

GSAC (Ours) ACRs 3 3 All phases 3

• First to combine causality with networked MARL

• First end-to-end guarantees for generalization + scalability

• ACR framework
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Future Research Directions

• Continuous spaces: continuous state/action space, function approximation w/
ACRs

• Large-scale networked systems:
— Traffic networks
— power grids
— robotics swarms

• Partial observability
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Key Takeaways

Causality + Locality =⇒ Scalable & Generalizable Networked MARL

• GSAC: First provably generalizable + scalable MARL for networked systems

• Technical innovation

— ACRs via causal structure
— Meta actor-critic with domain-conditioned policies

• Theoretical guarantees

— Approximation error
— Convergence
— Adaptation

• Empirical validation

— Scalability
— Fast adaptation
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Thank you!
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