Bridging Distributional and Risk-Sensitive Reinforcement Learning:

Balancing Statistical, Computational, and Risk Considerations

Hao Liang

The Chinese University of Hong Kong, Shenzhen

- Hao Liang, and Zhi-Quan Luo. "Bridging distributional and risk-sensitive reinforcement learning with provable regret bounds." arXiv preprint arXiv:2210.14051v3 (2022). Under review at *Journal of Machine Learning Research*.
- Hao Liang, and Zhi-Quan Luo. "A distribution optimization framework for confidence bounds of risk measures." *International Conference on Machine Learning*. PMLR, 2023.

What Is Reinforcement Learning (RL)?

- Sequential decision-making under uncertainty
- The goal is to maximize expected cumulative rewards

$$E\left[\sum_{t} \text{Reward}_{t}\right]$$

Standard RL is Risk-neutral

Online recommendation Maximize average "satisfaction"

Standard RL aims to maximize the expected return

Risk-sensitive RL (RSRL)

Healthcare/Clinical trial

Testing new vaccines

Finance

RSRL captures other distributional characteristics of return

Towards Sample-efficient RSRL

Sample efficiency is critical in RSRL!

- Healthcare monitoring systems
- Financial trading
- Online advertising

Question: How to attain sample-efficient RSRL?

Principle: Distributional Perspective

Markov Decision Process (MDP)

Tabular MDP M = (S, A, P, r, H)Finite state space S, action space ATransition kernel $P_h(s, a)$ $s' \sim P_h(s, a)$ Reward function $r_h(s, a)$ Horizon H

Markov Decision Process (MDP)

Tabular MDP M = (S, A, P, r, H)Finite state space S, action space ATransition kernel $P_h(s, a)$ $s' \sim P_h(s, a)$ Reward function $r_h(s, a)$ Horizon H

Policy
$$\pi = (\pi_h)_{h \in [H]}$$

 $\pi_h : S \to A \in \Pi$

Markov Decision Process (MDP)

Risk-neutral MDP vs. Risk-sensitive MDP

Risk-neutral MDP max $\mathbf{E}[Z_1^{\pi}]$

Risk-sensitive MDP max $\rho(Z_1^{\pi})$

Risk measure ρ : R.V./distribution $\rightarrow \mathbb{R}$ reflects the risk preference towards the uncertainty

Risk-neutral MDP vs. Risk-sensitive MDP

Risk-neutral MDP max $\mathbf{E}[Z_1^{\pi}]$

MANAGEMENT SCIENCE Vol. 18, No. 7, March, 1972 Printed in U.S.A.

Risk-sensitive MDP max $\rho(Z_1^{\pi})$

RISK-SENSITIVE MARKOV DECISION PROCESSES*

RONALD A. HOWARD[†] AND JAMES E. MATHESON[‡]§

Entropic risk measure (ERM) [1] $U_{\beta}(X) \coloneqq \frac{1}{\beta} \log \mathbb{E}[\exp(\beta X)] = \mathbb{E}[X] + \frac{\beta}{2} \mathbb{V}[X] + O(|\beta|^2)$

[1] Howard, Ronald A., and James E. Matheson. "Risk-sensitive Markov decision processes." *Management science* 18.7 (1972): 356-369.

Risk-neutral MDP vs. Risk-sensitive MDP

MANAGEMENT SCIENCE Vol. 18, No. 7, March, 1972 Printed in U.S.A.

Risk-sensitive MDP max $\rho(Z_1^{\pi})$

RISK-SENSITIVE MARKOV DECISION PROCESSES*

RONALD A. HOWARD[†] AND JAMES E. MATHESON[‡]§

Entropic risk measure (ERM) [1] $U_{\beta}(X) \coloneqq \frac{1}{\beta} \log \mathbb{E}[\exp(\beta X)] = \mathbb{E}[X] + \frac{\beta}{2} \mathbb{V}[X] + O(|\beta|^2)$

 β controls risk preference

- **Risk-seeking** $\beta > 0$: favoring high uncertainty
- **Risk-averse** $\beta < 0$: favoring low uncertainty
- **Risk-neutral** $\beta \rightarrow 0$

[1] Howard, Ronald A., and James E. Matheson. "Risk-sensitive Markov decision processes." *Management science* 18.7 (1972): 356-369.

Find the optimal policy
$$\pi^* = (\pi_1^*, \cdots, \pi_H^*)$$

 $\pi^* := \operatorname{argmax}_{(\pi_1, \cdots, \pi_H)} V_1^{\pi_1 \cdots \pi_H}(s_1) := U_\beta(Z_1^{\pi_1 \cdots \pi_H})$

■ A multi-stage maximization problem

$$\pi = (\pi_1, \cdots, \pi_H) \in \Pi^H$$

■ Direct search suffers exponential computational complexity [2] $|\Pi^{H}| = |\Pi|^{H}$

[2] Bertsekas, Dimitri. **Dynamic programming and optimal control: Volume I.** Vol. 4. Athena scientific, 2012.

Find the optimal policy

$$\boldsymbol{\pi}^* := \operatorname{argmax}_{(\pi_1, \cdots, \pi_H)} V_1^{\pi_1 \cdots \pi_H}(s_1) = \boldsymbol{U}_{\boldsymbol{\beta}}(Z_1^{\pi_1 \cdots \pi_H})$$

A multi-stage maximization problem

$$\pi = (\pi_1, \cdots, \pi_H) \in \Pi^H$$

■ Direct search suffers exponential computational complexity $|\Pi^{H}| = |\Pi|^{H}$

Risk-neutral optimality equation

 $Q_h^*(s,a) = r_h(s,a) + \sum P_h(s'|s,a)V_{h+1}^*(s')$ $V_h^*(s) = \max_a Q_h^*(s,a), V_{H+1}^*(s) = 0$

Find the optimal policy

$$\boldsymbol{\pi}^* := \operatorname{argmax}_{(\pi_1, \cdots, \pi_H)} V_1^{\pi_1 \cdots \pi_H}(s_1) = \boldsymbol{U}_{\boldsymbol{\beta}}(Z_1^{\pi_1 \cdots \pi_H})$$

A multi-stage maximization problem

$$\pi = (\pi_1, \cdots, \pi_H) \in \Pi^H$$

■ Direct search suffers exponential computational complexity $|\Pi^{H}| = |\Pi|^{H}$

Risk-neutral optimality equation

 $Q_h^*(s,a) = r_h(s,a) + \sum P_h(s'|s,a)V_{h+1}^*(s')$ $V_h^*(s) = \max_a Q_h^*(s,a), V_{H+1}^*(s) = 0$

Optimal substructure

- Break into multiple single-stage problems
- Recursion of value functions

Find the optimal policy

$$\boldsymbol{\pi}^* := \operatorname{argmax}_{(\pi_1, \cdots, \pi_H)} V_1^{\pi_1 \cdots \pi_H}(s_1) = \boldsymbol{U}_{\boldsymbol{\beta}}(Z_1^{\pi_1 \cdots \pi_H})$$

A multi-stage maximization problem

$$\pi = (\pi_1, \cdots, \pi_H) \in \Pi^H$$

■ Direct search suffers exponential computational complexity $|\Pi^{H}| = |\Pi|^{H}$

Risk-neutral optimality equationOptimal substructure $Q_h^*(s,a) = r_h(s,a) + \sum P_h(s'|s,a)V_{h+1}^*(s')$ \blacksquare Break into multiple single-stage problems $V_h^*(s) = \max Q_h^*(s,a), V_{H+1}^*(s) = 0$ \blacksquare Recursion of value functions

Optimal substructure for risk-sensitive MDP?

Find the optimal policy

$$\boldsymbol{\pi}^* := \operatorname{argmax}_{(\pi_1, \cdots, \pi_H)} V_1^{\pi_1 \cdots \pi_H}(s_1) = \boldsymbol{U}_{\boldsymbol{\beta}}(Z_1^{\pi_1 \cdots \pi_H})$$

A multi-stage maximization problem

$$\pi = (\pi_1, \cdots, \pi_H) \in \Pi^H$$

■ Direct search suffers exponential computational complexity $|\Pi^{H}| = |\Pi|^{H}$

Risk-neutral optimality equation

 $Q_h^*(s,a) = r_h(s,a) + \sum P_h(s'|s,a)V_{h+1}^*(s')$ $V_h^*(s) = \max_a Q_h^*(s,a), V_{H+1}^*(s) = 0$

Optimal substructure

- Break into multiple single-stage problems
- Recursion of value functions

Optimal substructure for risk-sensitive MDP? Yes. Distributional dynamic programing

Given policy
$$\pi$$

 $\pi_1(s_1) = a_1,$
 $\pi_2(s_1) = a_1, \pi_2(s_2) = a_2$

Task Determine the **r.v.** $Z_1^{\pi}(s_1)$

Given policy
$$\pi$$

 $\pi_1(s_1) = a_1,$
 $\pi_2(s_1) = a_1, \pi_2(s_2) = a_2$

Task Determine the **r.v.**
$$Z_1^{\pi}(s_1)$$

Recursion of random variables

Denote by $Y_h(s) \coloneqq Z_h(s, \pi_h(s))$

Given policy
$$\pi$$

 $\pi_1(s_1) = a_1,$
 $\pi_2(s_1) = a_1, \pi_2(s_2) = a_2$

Task Determine the **r.v.** $Z_1^{\pi}(s_1)$

Recursion of random variables

$$Y_2(s_1) = \frac{0.3}{Y_2(s_2)} = \frac{0.5}{0.5}$$

Deterministic final reward

$$S'|s_1, a_1 \sim \begin{cases} s_1, w. p. 0.4 \\ s_2, w. p. 0.6 \end{cases}$$

Fact 1: mixture distribution

$$X_i \sim F_i, P(I = i) = p_i \Longrightarrow X_I \sim \sum_i p_i F_i$$

Fact 2: shift $X \sim F \Longrightarrow X + c \sim F(\cdot -c)$

Fact 1: mixture distribution

$$X_i \sim F_i, P(I = i) = p_i \Longrightarrow X_I \sim \sum_i p_i F_i$$

Recursion of R.V.s $Z_{h}(s,a) = r_{h}(s,a) + Y_{h+1}(S')$ $S' \sim P_{h}(\cdot | s, a)$ $Y_{h}(s) = Z_{h}(s, \pi_{h}(s))$ Fact 2: shift $X \sim F \Longrightarrow X + c \sim F(\cdot -c)$

Fact 1: mixture distribution

$$X_i \sim F_i, P(I = i) = p_i \Longrightarrow X_I \sim \sum_i p_i F_i$$

Fact 2: shift $X \sim F \Longrightarrow X + c \sim F(\cdot -c)$

Fact 1: mixture distribution

$$X_i \sim F_i, P(I = i) = p_i \Longrightarrow X_I \sim \sum_i p_i F_i$$

Fact 2: shift $X \sim F \Longrightarrow X + c \sim F(\cdot -c)$

Distributional Bellman Operator $\mathbf{T}_{d}: P(R)^{S} \to P(R)^{S \times A}$ $\eta_{h}(s, a) = [\mathbf{T}_{d}\nu_{h+1}](s, a)$ $\coloneqq \sum P_{h}(s'|s, a)\nu_{h+1}(s')(\cdot -r_{h}(s, a))$

Policy Evaluation Given π , determine Z_1^{π} **Risk-sensitive Control** $\max_{\pi} \ \boldsymbol{U}_{\boldsymbol{\beta}} (Z_1^{\pi})$

Risk-sensitive Control $\max_{\pi} \boldsymbol{U}_{\boldsymbol{\beta}} (Z_1^{\pi})$

Key property 1: Additivity $U_{\beta}(X + c) = U_{\beta}(X) + c$ **Key property 2: Independence**

 $\boldsymbol{U}_{\boldsymbol{\beta}}(F_2) \leq \boldsymbol{U}_{\boldsymbol{\beta}}(F_1) \Longrightarrow$ $\boldsymbol{U}_{\boldsymbol{\beta}}((1-\theta)F_2 + \theta G) \leq \boldsymbol{U}_{\boldsymbol{\beta}}((1-\theta)F_1 + \theta G)$

From DP to RL

- DP requires the knowledge of transition
- RL deals with unknown transition
- Learn from interactions/samples
- Expensive samples

Performance

samples

Fundamental problem of RL Statistical/sample efficiency

High sample efficiency

Episodic MDP

First episode

Episodic MDP

K-th episode

Episodic MDP

K-th episode

Exploration vs. Exploitation Dilemma

EPLORE -vs.- EXPLOIT

EXPLORATION

Try different actions to gather info

Use the best-known action

Sample efficiency requires balance between exploration and exploitation!

Risk-sensitive Optimism in Face of Uncertainty

- An effective principle for efficient exploration Optimism in Face of Uncertainty (OFU)
- Act greedily w.r.t. Upper Confidence Bound of Risk Value
- Encourages exploring actions with the **best possible** outcomes

Risk-sensitive Optimistic Distribution Iteration (RODI)

Empirical model $\widehat{P}_{h}^{k}(s'|s,a) = N_{h}^{k}(s,a,s') / N_{h}^{k}(s,a)$

Approximate Distributional Bellman operator $\left[\widehat{\mathbf{T}_{d}}^{k} v_{h+1}^{k}\right](s,a) \coloneqq \sum \widehat{P}_{h}^{k}(s'|s,a) v_{h+1}^{k}(s')(\cdot -r_{h}(s,a))$

> Approximate Bellman recursion $\eta_h^k \leftarrow \widehat{\mathbf{T}_d}^k v_{h+1}^k$

Distributional Optimism Operator $\eta_h^k \leftarrow \mathbf{0}_{c^k} \eta_h^k$

Policy in episode k $\pi_h^k(s) \leftarrow \operatorname{argmax}_a U_\beta(\eta_h^k(s, a))$

Risk-sensitive Optimistic Distribution Iteration (RODI)

Empirical model $\widehat{P}_{h}^{k}(s'|s,a) = N_{h}^{k}(s,a,s') / N_{h}^{k}(s,a)$

Approximate Distributional Bellman operator $\left[\widehat{\mathbf{T}_{d}}^{k} v_{h+1}^{k}\right](s, a) \coloneqq \sum \widehat{P}_{h}^{k}(s'|s, a) v_{h+1}^{k}(s')(\cdot -r_{h}(s, a))$

RODI in one line
$$\eta_h^k \leftarrow \mathbf{O}_{c^k} \widehat{\mathbf{T}_d}^k v_{h+1}^k$$

Approximate Bellman recursion $\eta_h^k \leftarrow \widehat{\mathbf{T}_d}^k v_{h+1}^k$

Distributional Optimism Operator $\eta_h^k \leftarrow \mathbf{0}_{c^k} \eta_h^k$

Policy in episode k $\pi_h^k(s) \leftarrow \operatorname{argmax}_a U_\beta(\eta_h^k(s, a))$ **Optimism** $U_{\beta}(\eta_h^k(s,a)) \ge U_{\beta}(\eta_h^*(s,a))$ $\forall (s,a,k,h)$

Distributional Optimism

Def. A distribution F is optimistic over G if $U_{\beta}(F) \ge U_{\beta}(G)$ Denote by $F \ge G$

Given a confidence ball of distributions $B(F,c) \coloneqq \{G | ||G - F|| \le c\}$

Distributional Optimism

Def. A distribution F is optimistic over G if $U_{\beta}(F) \ge U_{\beta}(G)$ Denote by $F \ge G$

Given confidence ball of distributions $B(F,c) \coloneqq \{G | ||G - F|| \le c\}$

Intuition move probability mass from the lower tail to the maximum value

- Keramati, Ramtin, et al. "Being optimistic to be conservative: Quickly learning a CVaR policy." *Proceedings of the AAAI conference on artificial intelligence*. Vol. 34. No. 04. 2020.
- Hao Liang, and Zhi-Quan Luo. "A distribution optimization framework for confidence bounds of risk measures." *International Conference on Machine Learning*. PMLR, 2023.

Optimism of RODI

Computational Inefficiency of RODI

Computational Inefficiency of RODI

Computational Inefficiency of RODI

Operator T_d increases support size exponentially!

RODI with Distribution **Rep**resentation (**RODI-Rep**)

Operator T_d increases support size exponentially

$$\eta_h \leftarrow \mathbf{T}_d \nu_{h+1} \qquad \longrightarrow \qquad |\eta_h| = \mathbf{S} \cdot |\nu_{h+1}|$$

RODI with Distribution Representation (RODI-Rep)

Operator T_d increases support size exponentially

$$\eta_h \leftarrow \mathbf{T}_d \nu_{h+1} \qquad \longrightarrow \qquad |\eta_h| = \mathbf{S} \cdot |\nu_{h+1}|$$

Represent distribution with fixed support via projection

$$\eta_h \leftarrow \Pi \mathbf{T}_d \nu_{h+1} \quad \longrightarrow \quad |\eta_h| = |\nu_{h+1}| = |\eta_{h+1}|$$

RODI with Distribution Representation (RODI-Rep)

Operator T_d increases support size exponentially

$$\eta_h \leftarrow \mathbf{T}_d \nu_{h+1} \qquad \longrightarrow \qquad |\eta_h| = \mathbf{S} \cdot |\nu_{h+1}|$$

Represent distribution with fixed support via projection

$$\eta_h \leftarrow \mathbf{\Pi} \mathbf{T}_d \nu_{h+1} \quad \longrightarrow \quad |\eta_h| = |\nu_{h+1}| = |\eta_{h+1}|$$

$$\begin{array}{c} \textbf{RODI-Rep} \\ \eta_h \leftarrow \Pi \textbf{O}_c \widehat{\textbf{T}_d} \nu_{h+1} \end{array} \longrightarrow |\eta_h| = |\nu_{h+1}| \end{array}$$

Ensure optimism while maintaining computational efficiency

Bernoulli representation

Regret Lower Bound

 $T \coloneqq KH$ total time steps

For any algorithm, exists an MDP instance $E[\operatorname{Regret}(K)] \ge \Omega\left(\frac{\exp(\beta H/6) - 1}{\beta}\sqrt{SAT}\right)$

Fundamental trade-off between risk sensitivity and sample complexity

Fix and tighten the previous lower bound
 Recover tight lower bound under risk-neutral setting
 Hold for β > 0

Corrected result in [3] $E[\operatorname{Regret}(K)] \ge \Omega \left(\frac{\exp(|\beta|H/2) - 1}{|\beta|} \sqrt{K \log K} \right)$ Missing S, A

Loose dependency on *H*

- Reduction to 2-armed bandit
- Proof has errors

[3] Fei, Yingjie, et al. "**Risk-sensitive reinforcement learning: Near-optimal risk-sample tradeoff in regret**." *Advances in Neural Information Processing Systems* 33 (2020): 22384-22395.

Regret Upper Bound

Algorithm	Regret bound	Time	Space
RSVI	$\tilde{\mathcal{O}}\left(\exp(\beta H^2)\frac{\exp(\beta H)-1}{ \beta }\sqrt{HS^2AT}\right)$		
RSVI2		$\mathcal{O}\left(TS^{2}A ight)$	$\mathcal{O}\left(HSA+T\right)$
RODI-Rep	$\tilde{\mathcal{O}}\left(\frac{\exp(\beta H)-1}{ \beta }\sqrt{HS^2AT}\right)$		2001
RODI	X 171	$\mathcal{O}(KS^H)$	$\mathcal{O}(S^H)$
lower bound	$\Omega\left(rac{\exp(eta H/6)-1}{eta}\sqrt{SAT} ight)$	12	2

RODI and **RODI-Rep** satisfies $\operatorname{Regret}(K) \le O\left(\frac{\exp(|\beta|H) - 1}{|\beta|}\sqrt{HS^2AT}\right)$

Matching the best known result in [4]
 Clean and interpretable analysis
 Outperform RSVI2 [4] empirically

[4] Fei, Yingjie, et al. "Exponential bellman equation and improved regret bounds for risk-sensitive reinforcement learning." *Advances in Neural Information Processing Systems* 34 (2021): 20436-20446.

Summary

Main Contributions

- Risk-Sensitive Distributional Dynamic Programming framework
- Computationally efficient DRL algorithm with near-optimal regret guarantee
- Tight regret lower bound

Summary

Main Contributions

- Risk-Sensitive Distributional Dynamic Programming framework
- Computationally efficient DRL algorithm with near-optimal regret guarantee
- Tight regret lower bound

Future Directions

- Scalability issues with large state-action spaces: approximation techniques
- Multi-Agent RSRL: coordination and cooperation
- Theoretical foundations: connections to robust control
- Application domains: cyber-physical systems

Thank You